原研における TOPICS を用いた 輸送研究の現状

白井 浩

日本原子力研究所 那珂研究所

- 1. TOPICS 概要
- 2. 原研における輸送研究
- 3. 輸送モデル
- 4. 統合コードと TOPICS

平成15年7月31日,8月1日 京都大学工学部原子核工学専攻会議室

1. TOPICS 概要

(TOkamak Prediction and Interpretation Code System) 機能: 2 次元 MHD 平衡 + 1 次元輸送 (粒子輸送、エネルギー輸送、磁場拡散)

<mark>解析手法:定常解析(実験解析 JT-60 データ読み込み)</mark> 非定常解析(シミュレーション、実験解析 (JT-60 時系列データ))

- 図形出力 : Graphic library : GDlib + Eagle(原研のオリジナル)
 定常解析 : 計算終了後自動的に図形出力
 非定常解析 : ステップごと・時間間隔ごとにバイナリファイル出力
 別のソフト Topplt で図形出力
- ファイル出力 : UFILE 形式 (1 時刻、多時刻)、テキスト (CSV) 形式、バコンパイル : Fortran 90

実行環境: IBM SP3, Compaq(Dec) alfa WS, PC Linux, SGI Origin

移植性:実験解析用ファイル入力 (JT-60 実験データはバイナリで読み込み)と 図形出力ルーチン以外は基本的に修正なしで可能

粒子保存則 $\frac{\partial n_i}{\partial t} = -\frac{1}{V'} \frac{\partial}{\partial \rho} (V' \Gamma_i) + S_i \qquad \Gamma_i = -\left\langle |\nabla \rho|^2 \right\rangle D_i \nabla n_i + n_i v_i$ エネルギー保存則 $\frac{3}{2}\frac{\partial}{\partial t}(n_jT_j) = -\frac{1}{V'}\frac{\partial}{\partial \rho}(V'Q_j) + P_j^{Gain} + P_j^{EQ} - P_j^{Loss} \qquad (j = e, i, He, imp)$ $Q_{i} = -\left\langle |\nabla \rho|^{2} \right\rangle n_{i} \chi_{i} \nabla T_{i} + \frac{3}{2} T_{i} \Gamma_{i}$ 磁場拡散 $\frac{\partial \boldsymbol{B}_{\boldsymbol{\rho}}}{\partial t} = -\frac{\partial}{\partial \boldsymbol{\rho}} \left| \frac{\boldsymbol{\eta}_{\parallel}}{\boldsymbol{T} \langle \boldsymbol{R}^{-2} \rangle} \left(\langle \boldsymbol{j}_{\parallel} \cdot \boldsymbol{B} \rangle - \langle \boldsymbol{j}_{\parallel}^{ext} \cdot \boldsymbol{B} \rangle \right) \right|$ $\left\langle j_{\parallel} \cdot \boldsymbol{B} \right\rangle = \frac{T\rho}{(V')^2 \langle \boldsymbol{R}^{-2} \rangle} \frac{\partial}{\partial \rho} \left| \left\langle \left| \frac{\nabla V}{\boldsymbol{R}} \right|^2 \right\rangle \langle \boldsymbol{R}^{-2} \rangle \frac{\boldsymbol{B}_{\rho}}{\rho} \right|$ $T = RB_{\phi}$

2. 原研における輸送研究

TOPICS の定常輸送解析結果出力例

E29728, I_p=1.5 MA, B_t=3.5 T (**負磁気シア**)

TOPICS 非定常輸送解析(高イオン温度 H モード) 7

実験データをもとに多時刻分布フィッティングデータを用意して、 フォッカープランク方程式から NBI パワーの時間変化を求め、輸 送係数、中性子発生率などを評価する。

シミュレーション例 (新古典テアリングモード)

8

林 伸彦(解析室)

JT-60SC のパラメータを想定

 $I_{\rm p}$ =3.0 MA, $B_{\rm T}$ =3.8 T, R=2.9 m, a=0.85 m, P_{NBI}=30 MW, $\overline{n_{\rm e}}$ =4.2 × 10¹⁹ m⁻³, $\overline{T_{\rm e}}$ =6.4 keV, $\overline{T_{\rm i}}$ = 7.5 keV

拡散係数は経験則

シミュレーション例 (新古典テアリングモード続き)

径電場の評価 (径電場シアと輸送係数の軽減)

運動量バランスの式
$$m_a n_a \frac{d\vec{u}_a}{dt} = e_a n_a (\vec{E} + \vec{u}_a \times \vec{B}) - \nabla P_a - \nabla \cdot \hat{\Pi}_a + \vec{F}_{a1} + \vec{M}_a$$

 $\stackrel{periodic matrix}{\overset{periodic matrix}{\overset{periodimatrix}{\overset{periodimatr}$

熱運動量バランスの式
$$m_a \frac{\partial}{\partial t} \left(\frac{q_a}{T_a} \right) = \frac{e_a}{T_a} \vec{q}_a \times \vec{B} - \frac{5}{2} n_a \nabla T_a - \nabla \cdot \hat{\Theta}_a + \vec{F}_{a2} + \vec{Q}_a$$

^{粘性} 熱摩擦力 熱運動量源
テンソル

定常状態 (左辺 = 0) を仮定して磁力線に平行な成分を磁**類**面平 $\langle \vec{B} \cdot \vec{F}_{a1} \rangle = \langle \vec{B} \cdot \nabla \cdot \hat{\Pi}_{a} \rangle - \langle \vec{B} \cdot \vec{M}_{a} \rangle - e_{a}n_{a} \langle \vec{B} \cdot \vec{E} \rangle$ $\langle \vec{B} \cdot \vec{F}_{a2} \rangle = \langle \vec{B} \cdot \nabla \cdot \hat{\Theta}_{a} \rangle - \langle \vec{B} \cdot \vec{Q}_{a} \rangle \qquad \hat{L}$ 規格化摩擦行列 \hat{M} 規格化粘性行列

 $\langle \vec{B} \cdot \vec{F}_{a2} \rangle = \langle \vec{B} \cdot \nabla \cdot \hat{\Theta}_{a} \rangle - \langle \vec{B} \cdot \vec{Q}_{a} \rangle$ 7 × 7 の行列式にまとめる $\hat{L} \vec{U}_{\parallel} = \hat{M} [\vec{U}_{\parallel} + \vec{V}] - \vec{S} - \vec{E}$ $\hat{L} \vec{U}_{\parallel} = \hat{M} [\vec{U}_{\parallel} + \vec{V}] - \vec{S} - \vec{E}$ \vec{E} \vec{E} $\vec{U}_{\parallel} = \hat{M} [\vec{U}_{\parallel} + \vec{V}] - \vec{S} - \vec{E}$ \vec{E} \vec{E} 協化 摩擦行列 \vec{M} 規格化 粘性行列 \vec{U}_{\parallel} 磁力線方向の流速に関するベクトル \vec{V} 熟丁学的力 \vec{E} 通動量・熱運動量源 \vec{E} 磁力線方向の電場に関するベクトル

すなわち $\vec{U}_{\parallel} = \left[\left(\hat{L} - \hat{M} \right)^{-1} \hat{M} \right] \vec{V} - \left(\hat{L} - \hat{M} \right)^{-1} \vec{S} - \left(\hat{L} - \hat{M} \right)^{-1} \vec{E}$ M. Kikuchi and M. Azumi PPCF, 37, 1215 (1995)

径電場分布の評価 (続き)

磁気面平均された磁力線に平行な不純物速度(不純物の実験データを使うため) $\left\langle \boldsymbol{B}\boldsymbol{u}_{||\boldsymbol{I}}\right\rangle = \sum_{j=1}^{\mathbf{Z}} \left\langle \left[\left(\hat{\boldsymbol{L}} - \hat{\boldsymbol{M}}\right)^{-1} \hat{\boldsymbol{M}} \right]_{\boldsymbol{I},j} \boldsymbol{V}_{j} - \left[\left(\hat{\boldsymbol{L}} - \hat{\boldsymbol{M}}\right)^{-1} \right]_{\boldsymbol{I},j} \left\langle \boldsymbol{B} \boldsymbol{\bullet} \boldsymbol{M} \right\rangle_{j} - \boldsymbol{e}_{j} \boldsymbol{n}_{j} \left[\left(\hat{\boldsymbol{L}} - \hat{\boldsymbol{M}}\right)^{-1} \right]_{\boldsymbol{I},j} \left\langle \boldsymbol{B} \boldsymbol{\bullet} \boldsymbol{E} \right\rangle_{j} \right\rangle$ ストラップ項 外部駆動項 誘導項 (無視) 摩擦行列 運動量 •**烈**; j=1 : 電子 i=5 : 粘性行列 =2 熱化イオン j=6 : 熱化イオン 熱力学的力 不統物不純物 i=3 : 運動量・熱運動量源 (OFMC code) =4 高速イオン 不純物のトロイダル速度 荷電交換 再結合分光 $u_{I\phi} = \frac{B_{\phi}}{\langle B^2 \rangle} \langle Bu_{||I} \rangle - \left(1 - \frac{B_{\phi}^2}{\langle B^2 \rangle}\right) R \left(\frac{d\Phi}{d\psi} + \frac{1}{e_I n_I} \frac{dP_I}{d\psi}\right)$ (ポロイダル回転は新古典 進行) $\frac{1}{\sum_{j=1}^{4} \alpha^{*}_{I,j}} \left(-\frac{\left\langle \mathbf{B}^{2} \right\rangle}{\left(\mathbf{R} \mathbf{B}_{\phi} \right)^{2}} \frac{d\psi}{d\rho} \mathbf{R} u_{I\phi}^{*} - \sum_{j=1}^{4} \alpha^{*}_{I,j} \frac{1}{\mathbf{e}_{j} \mathbf{n}_{j}} \frac{dP_{j}}{d\rho} + \sum_{j=1}^{3} \alpha^{*}_{I,j+4} \frac{1}{\mathbf{e}_{j}} \frac{dT_{j}}{d\rho} \right)$

$$\boldsymbol{u}^{*}{}_{I\phi} = \boldsymbol{u}_{I\phi} + \frac{\boldsymbol{B}_{\phi}}{\langle \boldsymbol{B}^{2} \rangle} \sum_{j=1}^{T} \left[\left(\hat{\boldsymbol{L}} - \hat{\boldsymbol{M}} \right)^{-1} \right]_{I,j} \langle \boldsymbol{B}^{\bullet} \boldsymbol{M} \rangle_{j} \quad \boldsymbol{\alpha}_{i,j} = \left[\left(\hat{\boldsymbol{M}} - \hat{\boldsymbol{L}} \right)^{-1} \hat{\boldsymbol{M}} \right]_{i,j} \quad \boldsymbol{\alpha}^{*}{}_{I,j} = \boldsymbol{\alpha}_{I,j} - \left(\langle \boldsymbol{B}^{2} \rangle / \boldsymbol{B}_{\phi}^{2} - 1 \right) \delta_{I,j}$$

径電場・フローの分布の時間発展シミュレーション(予定) 運動量バランスの式・熱運動量バランスの式を解く 13 実験におけるフロー分布 (不純物のトロイダル回転)の時間変化との比較

ITB の時間発展との consistency (Er 分布)、輸送モデリングへの寄与

(1) 時間微分項を残す

運動量・熱運動量バランスの式の左辺の $m_a n_a \frac{d}{dt} \langle \vec{u}_a \vec{B} \rangle$ および $m_a \frac{\partial}{\partial t} \langle \frac{1}{T_a} \vec{q}_a \vec{B} \rangle$ (2) 運動量源の評価

(3) 異常粘性項 (運動量に関する異常拡散係数) を考慮 右辺に $m_a n_a \mu_a^{ano} \nabla^2 \langle \vec{u}_a \cdot \vec{B} \rangle$ および $m_a \mu_{qa}^{ano} \nabla^2 \langle \frac{1}{T_a} \vec{q}_a \cdot \vec{B} \rangle$ を追加 $\mu_a^{ano} \sim \chi_a^{ano}$ を仮定

3. 輸送モデル

弱い磁気シアで輸送係数が減少する輸送モデル

輸送モデルと JT-60U の輸送係数との比較

ITB 輸送モデルの改良

- ・牛草モデルは qmin に ITB の脚があり、s の値のみで χ の低減を決めている 箱型 (強い) ITB や電子系の ITB の場合は良さそうだが、 弱い ITB の場合は一考が必要
- ・牛草モデルの表式ではの値を調整する係数が多く、汎用的に使えない
- ・これらの係数を JT-60 実験結果を基にプラズマパラメータで置き換えて、 ITB の領域から輸送モデルの改良を試みる

$$\chi_{j} = \chi_{j}^{(base)} \left\{ 1 - f\left(\frac{\omega_{ExB}}{\gamma_{L}}, \frac{T_{e}}{T_{j}}, \hat{s}, \alpha, \frac{\rho^{*}}{\rho_{ITB}^{*}}, \cdots \right) \right\}$$

輸送障壁 (ITB, ETB) 以外の領域の輸送としては、従来より用いている ITER | 込め則ベースの経験的熱拡散係数や、Weiland i [1], MMM (Multi-mode mod [2] を当面使用し、これに ITB の実験結果を相乗する

[1] H. Nordman, et al., Nucl. Fusion, 37, 413 (1997).[2] J. Kinsey and G. Bateman, Phys. Plasmas, 3, 3344 (1996).

ITB 輸送モデル改良について 17

ITB の脚の位置: Δ_e , Δ_i 、 ITB の広がりと強さ: α_e , α_i プラズマパラメータ化

- ・ITB 形成に関して電子系 (s が効く) とイオン系 (シアフローが効く) を分離
- ・ITB の脚位置は T_i の値如何で ρ_{min} より内側にも外側にもなる (坂本氏 '00 IAEA)
 - 正の s のある値の所で脚の位置が決まる(T_i が小さい場合) Δ_i をシフト q_{integer} と ITB 形成の関連性 (JET) は?
- ・ITB の幅 1/B_p (強い ITB の場合)、弱い ITB ほど幅が広くなる? α_e , α_i の値
- ・ITB の強さ(Pの大きさ)(磁気シア、外部運動量、ECH) α_{e}, α_{i} **値**
- ・ITB の加熱パワー閾値をどう考える? (local な熱流束そのもの?, P?, α パラメータ?)
- ・イオン系は ω_{FxB} が陽に入った表式が必要?(但し {1- ω_{FxB}/γ_{I} } で良いのか)
- ・T_i ITB と T_e ITB は互いに影響を及ぼし合うことを考慮

 χ_e と χ_i の表式の一部をクロスさせる

更に

- ・ITB における熱ピンチ・粒子ピンチの有無
- ・ETB と ITB の関連性 (ダブルバリアプラズマの形成・維持条件)

ベースになる輸送モデルも改良

・JT-60 過渡応答特性実験 (今年の冬)の解析結果を輸送モデルに反映
 ガスパフモジュレーション
 ECH モジュレーション
 運動量入力モジュレーション

理論シミュレーションからのフィードバック (NEXT)

ジャイロ粒子・流体シミュレーション

- ・揺らぎの自己組織化(乱流 帯状流)
- ・異なるスケールの揺らぎ間の複合的な相互作用

(1) 電子系・イオン系輸送の関連性

(2) 輸送障壁形成・維持 (揺らぎの自己抑制) の条件、輸送の制御条件のモデル化

輸送コードで使用可能な定式化が必要

原研の解析コード群 (整備中のものも含む)

平衡・輸送をベースにした 磁気核融合プラズマ時間発 展解析コード

- ・実験データとの比較による最適化
- ・核燃焼プラズマ予測
- ・運転シナリオの最適化

原研 NEXT 研究会 (平成 15 年 3 月 4 核燃焼プラズマコード構想

ITER, JT-60SC, JT-60U プラズマを対象

UFILE の例 (ITER 物理 R&D 分布 DB 用、テキスト形式)21

j 34487 JT60 2 0 6	;-SHOT #-	F(X) DATA -uwrite- 1	8-APL-00	(E34487, t=4.6s, Ti)
19-DEC-02	;-SHOT DATE	- UFILES ASCII FIL	LESYSIEM	
0	;-NUMBER OF AS	SOCIATED SCALAR	R QUANTITIES-	
RHO	;-INDEPENDEN	T VARIABLE LABEL	.: X-	
TIME SEC	CONDS ;-INDEPE	NDENT VARIABLE	LABEL: Y-	
TI eV	;-DEPENDENT V	ARIABLE LABEL-		
4	;-PROC CODE- 0:	RAW 1:AVG 2:SM 3:	AVG+SM	
51	;-# OF PTS- X, F()	X) DATA FOLLOW:		
1	;-# OF Y PTS- X,Y	,F(X,Y) DATA FOLL	SW:	
0.000000E+00 2.0	00000E-02 4.0000	00E-02 6.000000E-0	2 8.000000E-02	1.000000E-01
1.200000E-01 1.4	00000E-01 1.60000	0E-01 1.800000E-01	1 2.000000E-01	2.200000E-01
2.400000E-01 2.6	00000E-01 2.80000	0E-01 3.000000E-01	1 3.200000E-01	3.400000E-01
3.600000E-01 3.8	00000E-01 4.00000	0E-01 4.200000E-01	1 4.400000E-01	4.600000E-01
4.800000E-01 5.0	00000E-01 5.20000	0E-01 5.400000E-01	1 5.600000E-01	5.800000E-01
6.000000E-01 6.2	00000E-01 6.40000	0E-01 6.600000E-01	1 6.800000E-01	7.000000E-01
7.200000E-01 7.4	00000E-01 7.60000	0E-01 7.800000E-01	1 8.000000E-01	8.200000E-01
8.400000E-01 8.6	00000E-01 8.80000	0E-01 9.000000E-01	1 9.200000E-01	9.400000E-01
9.600000E-01 9.8	00000E-01 1.00000)0E+00		
4.600000E+00				
1.874068E+04 1.8	370750E+04 1.8608	00E+04 1.844235E+	-04 1.821087E+	04 1.791393E+04
1.755144E+04 1.7	12592E+04 1.6643	38E+04 1.610725E+	-04 1.552086E+	04 1.488848E+04
1.421486E+04 1.3	350508E+04 1.2764	65E+04 1.200010E+	-04 1.121801E+	04 1.042509E+04
9.629133E+03 8.8	338983E+03 8.0634	06E+03 7.311970E+	-03 6.595521E+	03 5.925367E+03
5.314926E+03 4.7	78537E+03 4.3335	39E+03 4.001851E+	-03 3.821413E+	03 3.685258E+03
3.523527E+03 3.3	866604E+03 3.2159	70E+03 3.071439E+	-03 2.933008E+	03 2.800604E+03
2.674175E+03 2.5	53689E+03 2.4390	55E+03 2.330246E+	-03 2.227179E+	03 2.129805E+03
2.038052E+03 1.9	951848E+03 1.8711	30E+03 1.795830E+	-03 1.725874E+	03 1.661193E+03
1.601667E+03 1.5	547420E+03 1.5000	000E+03		
;END-OF-DATA	COMN	/IENTS:		

TOPICS からの UFILE 出力変数一覧

小半径定義

小半径の対応 (RHOPHI)

平衡関係

プラズマ体積 (VOL) メッシュゾーンごとの体積 (DVOL) プラズマ断面積 (AREA) プラズマ表面積 (SUF) 大半径 (RMAJ) 小半径 (RMIN) 楕円度 (ELL) 三角度 (TRG) メトリック <! !> (GR1) メトリック <! !^2> (GR2)

実験データ

電子密度 (NE) 高速イオン密度 (BDENS) 電子温度 (TE) イオン温度 (TI) 有効電荷数 (ZE) トロイダル回転速度 (VTCX) トロイダル回転周波数 (WT)

圧力電流電場

プラズマ圧力(バルク)(PTH)
プラズマ圧力(高速イオン)(PBEAM)
プラズマ電流(CUR)
ブートストラップ電流(CURBS)
安全係数(計算値)(Q)
安全係数(MHD 平衡データ)(QQ)
周回電圧(V)
新古典プラズマ抵抗(ETA_NC)
径電場(ER)
ExB シア率(EBSHEAR)

source 項

NBI による粒子源 (SBTH)
リサイクリングによる粒子源 (SWTOT)
ジュール加熱パワー (POH)
NBI 加熱パワー (電子)(PBE)
NBI 加熱パワー (全イオン)(PBI)
放射損失パワー (PRAD)
運動量源(電子)(MELE)
運動量源(水素イオン)(MDEU)
運動量源(不純物イオン)(MIMP)
運動量源(全イオン)(MION)

輸送関係

電子熱拡散係数 (CONDE) イオン熱拡散係数 (CONDI) 伝導熱流束(電子)(QCNDE) 伝導熱流束(イオン)(QCNDI) 対流熱流束(電子)(QCNVE) 対流熱流束(イオン)(QCNVI) エネルギー等分配熱流束 (QIE) 放射損失熱流束 (QRAD) 荷電交換損失熱流束 (QCX)

進行状況

(ITB モデリングサブジェクト・ITPA 閉じ込め DB とモデリング・・の輸送研究)

- 輸送モデルとしてCDBM を導入、JT-60 データでの検証
- TOPICS/TASK の非定常輸送シミュレーションのベンチマークテスト
- プラズマ流 / 回転の効果を取り入れた輸送モデルの構築
- ITB 形成に関する過去のデータの解析
- ITB 準定常維持条件に関する過去のデータの解析
- JT-60 の過去の過渡応答実験のデータの見直し
- JT-60 過渡応答実験 (12 月)

NBI 運動量入力変調、ECH 加熱パワー変調、ECH 局所加熱、 ペレット・ガス注入密度摂動

解析が終わったら ITPA 分布データベースへの登録

更に

- CDBM 以外の ITPA の輸送モデルの検証
- 輸送理論 (粒子シミュレーションなどの結果) のモデル化・定式化

今後の課題

・輸送モデルの構築

(輸送係数だけでなく、輸送障壁の形成・維持条件、 フロー・径電場の時間発展・・) 核燃焼プラズマ予測・最適運転シナリオの研究 ・MHD 不安定性の効果のプラズマ性能 (輸送) の反映

(高 核燃焼プラズマ)

アルファ粒子 アルヴェン固有モードなども

・TOPICS/TASK のほかのベンチマーク、解析結果の共有