2002/11/1 京都大学

核燃焼プラズマ統合コード小研究会

階層化物理モデル

九州大学応用力学研究所

矢木雅敏

高温プラズマにおける時間・空間スケールの階層性

 $T_e = T_i = 10 \text{ kev}, n = 10^{20} \text{ m}^{-3}, B = 3 \text{ T}, a = 1 \text{ m}, R = 3 \text{ m}$ に対して

現象	MHD	ドリフト波	抵抗性MHD	輸送
時間スケール	~µsec	~10µsec	~100 <i>µsec</i>	~msec
特徴的な周波数	$\omega_A = k v_A$	$\omega_* = k_y \rho_s c_s / L_n$	$\mathcal{V}_{ei}^{1/3} \mathcal{W}_A^{2/3}$	$oldsymbol{ u}_{ii}$
空間スケール	~10 <i>cm</i>	~1 <i>cm</i>	~10 <i>cm</i>	~m
特徴的な波数	<i>ka</i> ~ 0.1	$k\rho_i \sim 0.1$	<i>ka</i> ~ 0.1	$\sim a^{-1}$

空間スケール(波数)による現象の分類

磁場閉じ込め核融合

- 平衡配位 $\mathbf{J} \times \mathbf{B} = \nabla p \quad \mathbf{B} \cdot \nabla p = 0$
- 安定性 線形安定性 エネルギー原理 *δW* ≥0

非線形発展 MHDモデル,2流体モデル

密度、速度、圧力の揺動成分

・ 輸送 磁気面平均された密度、圧力分布 $\left\langle \frac{\partial n}{\partial t} \right\rangle + \frac{1}{v'} (v'\Gamma)' = 0$ $\frac{3}{2} \left\langle \frac{\partial p}{\partial t} \right\rangle + \frac{1}{v'} (v'Q)' = \langle W \rangle + \langle \mathbf{V} \cdot (\mathbf{F} + en\mathbf{E}) \rangle$

クロージャとして粒子フラックスとエネルギーフラックスの評価 新古典フラックス、乱流駆動フラックス $\Gamma = \langle nV^r \rangle, Q = \langle Q^r \rangle$

高温プラズマの多スケール乱流による異常輸送

time domain in a jet with $R_{\lambda} = 626$ (Champagne 1978).

(cited from 'Turbulence' by U. Frisch)

輸送コードの問題点

クロージャーの問題:多スケール乱流に対するクロー ジャーモデルがまだ存在しない。

流れを解いていない。

ー方、近年トカマク実験で観測されている。Hモードや ITBでは大きな流れが存在している。

もし、大きな流れが存在すると平衡量は磁気フラックス のみならず、静電ポテンシャルにも依存してしまう。

また、磁気島が存在する場合の輸送を正確に扱えない。

輸送より早い時間スケールの現象は瞬時に定常に達する と仮定し、源として取り入れるため遷移現象を取り扱う ことは困難。

階層モデルの考え方

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t_0} + \mathcal{E} \frac{\partial}{\partial t_1} + \mathcal{E}^2 \frac{\partial}{\partial t_2} + \dots$$

 $\nabla = \nabla_0 + \varepsilon \nabla_1 + \varepsilon^2 \nabla_2 + \dots$

従来の考え方はスケール分離により各オーダーの現象 を抽出して解析していたが、階層モデルではあるオーダー 近傍のオーダーの項を含める。一種のLESモデル。

2 階層モデル 輸送+MHD

GLFをベースとした輸送・MHDモデル

応用例:輸送・MHDモデルによる熱伝搬解析

このモデルには1.5D輸送モデルには含まれていない効果 レーリーベナール熱対流効果(ボーム輸送効果)が含ま れている。

例:バーガース方程式 $\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} + v \frac{\partial^2 u}{\partial x^2}$

揺動エネルギーの時間発展(II)

Pulse

静電エネルギーの時間発展(DC電場の生成)

揺動圧力の等高線図 (ポロイダル断面)

圧力の時間発展(径分布)

まとめ

輸送・MHDモデルを用いて熱パルスの過渡応答を調べた。

- 熱パルス伝搬において非局所輸送を観測。
- ・熱パルスの伝搬特性はモード数や熱伝導係数のモデルに 依存している可能性あり。

計算コードの現状

VPP5000(9.6GFLOPS) VPP FORTRAN 8CPU !グリッドサイズ128x128x8, ステップサイズ100万ステップ(T=400) CPU時間 800時間, 実時間(ELAPS)約800x2=1600時間=約2ヶ月

高nバルーニングモードをカバーするには少なくとも グリッドサイズ128x2048x128は必要。1 ジョブ約3-5 年程度

コードの高速化が必要(スキームの検討)、地球シミュレータの使用?