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Modeling Challenges and Limitations.



9/16/2002 3

Approach and Materials 
Environment

Approach
Predictive;

Physics-Based;

Computational Design of Materials;

Experimentally-verifiable at Scale Interfaces.

Environment
Heat Flux: FW ~1 MW/m2;  Divertor ~5 –15 

MW/m2

Neutron Flux: ~ 3 – 5 MW/m2

Particle Flux:   Divertor ~1021-1022 m-2s-1

Mechanical Loads:  Pressure ~ 2-5 MPa
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Surface Phenomena

Fixe
d 
layer
s

Therm
ostat 
layers

Source 
atom

(0.01eV)

Uni-axial 
Tension

[ ]111
[ ]112

[ ]110

Surface Re-structuring after re-deposition.

H. Huang, RPI

High Heat Flux/ Particle Flux result in:
Short timescale phenomena (e.g. 10-12 – 10-9 s):

Sputtering;

Implantation of helium and tritium;

Re-deposition and tritium co-deposition;

Near-surface damage (collision cascades).

Long timescale phenomena (e.g. 10-3 – 106 s):

Atomic transport (e.g diffusion, trapping, 
adsorption, recombination and desorption);

Surface roughening and re-structuring;

Microstructure and phase evolution (e.g. 
voids, bubbles, dislocations, grains & new 
phases).
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Bulk Phenomena
High Heat Flux/ Neutron flux/ Mechanical 
Loads result in:
Short timescale phenomena (e.g. 10-12 – 10-9 s):

Atomic Displacements;

Fast Transport;

Lattice Defects (Vacancies and Interstitials).

Long timescale phenomena (e.g. 10-3 – 106 s):

Microstructure Evolution (Voids, Bubbles, 
Dislocations, Phases);

Dimensional Instabilities (Swelling and 
Creep);

Shear Bands (Localized plasticity);

Helium Embrittlement.
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Material-Plasma Interfacing

Material
Surface

Plasma 
Edge

Plasma
Core

Material
Bulk

Ab initio;
MD
KMC
DD
Rate Theory
FEM

VFTRIM;
REDEP
HEIGHTS
BPHI-3D
UEDGE-2D

Transport;
Turbulence;
MHD;
Confinement;
Islands, 

Stability & 
Oscillations.

Cracks
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Correspondence & Analogy

10231014 - 1016Density & Degrees of 
Freedom per cm3

Space: Self-organization, 
segregation;

Time: shear bands, cracks.

Space: Islands, Coherent 
Structures;

Time: Oscillations, Disruptions

Instabilities

Microstructure Evolution & 
Fokker-Planck*;

Elasticity;
Rate Theory;
Plasticity

Collisions & Fokker-Planck;

Fluid, MHD
Reaction Cross-sections;
Turbulence

Transport & 
Continuum

Particle-Particle (MD);
Particle-Field (DD-FEM);
KMC, Lattice MC, Event MC.

Particle-Particle (P-P);
Particle-Field (PIC);
KMC

Particle Methods

Short-range: Atomic > Pair, 
Many-body

Long-range: Elastic

Long-range: Coulomb, 
Electromagnetic

Forces

MaterialPlasmaPhenomenon

*H. Huang and N.M. Ghoniem, "Formulation of a Moment Method for n-dimensional Fokker-Planck Equations", 
Phys. Rev. E, 51, 6: 5251-5260, 1995. 
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Correspondence & Analogy
Electromagnetics Dislocation Dynamics
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Continuum 
Mechanics

Statistical 
Mechanics

Dislocation 
Dynamics
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Multi-scale Modeling Strategy
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Atomistic Simulations*

First-principles
(<200 atoms,<10ps)

Start from Schroedinger’s
Equation;

Approximate: DFT;

Accurate energetics of 
point defects and defect 
clusters

Empirical Potentials;

Initial defect distribution;

Verlet or predictor-corrector;

time-step ~ 1 fs;

Short-range forces;

Parallelization by spatial decomposition with 
MPI.

(1-100 million atoms, < 100 ns)

Molecular dynamics

Freeze atomic degrees of Freedom;
Track defects only;
Microstructure evolution of defects 
Spatial inhomogeneity.

KMC (<µm,<ms)

* Srolovitz and Carr - Princeton
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Interatomic Potentials and MD Simulations

Born-Oppenheimer:  Adiabatically eliminate 
nuclear degrees of freedom. Solve only for 
electrons.  

Kohn-Sham-Hohenberg: Density Functional 
Theory (DFT) reduces to the single electron 
quantum problem, with effective potentials.  

Exchange-Correlation potentials are 
approximated with the Local Density 
Approximation (LDA).  

Using DFT-LDA material properties have 
been calculated without input.

Quantum MD Bond-order
Potentials Classical MD with Empirical Potentials

Stoller, ORNL
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Dislocation-Microstructure Interaction: 
KMC Modeling of Pinning and Rafting
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Mesoscopic Simulations: Dislocation 
Dynamics
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Differential Forms of DD are analogous to 
Electromagnetics, but of higher dimensionality
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Weak Variational Form for DD 
Equations of Motion

Equations of Motion

*
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Final Equation of Motion

Q=Nodal coordinate vector
F=Nodal Forces
K=Mobility Matrix
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Mesoscopic Simulations of 
Plasticity

One micron
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Parallel Dislocation Dynamics Code
Algorithm Description

Similar to the N-body problem in plasma & astrophysics;

Hierarchical tree representation can be utilized in the DD code.

The Major difference is that dislocation lines are irregular filaments & 
not particles.

Far-field interaction is approximated by multipole expansions.

Hierarchical tree-based methods reduce the computational complexity 
from O(N*N) to O(N log(N)) or even O(N) .

Special techniques are used to maintain load balancing and reduce 
communications between computer cluster nodes. 

1. Jaswinder Pal Singh, et al. J. Parallel and Distributed Computing. 1995; 27:118.

2. Ananth Y. Grama, et al. SIAM Conference on Parallel Processing, San Francisco, 1994.

3. H.Y. Yang, and R. LeSar. Philosophical Magazine A, 1995; 71(1):149. 
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DD & KMC Parallel Algorithms work 
well for a small number of processors

DD Algorithm

78.1135.1237.8327.3449.9897.6Time (s)

1684321# of processors

KMC Algorithm
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Simulations & 
experiments 
on self-organization 
of irradiated Cu 
microstructure.

Dose 
(isotropic)

Dose 
(anisotropic)

Continuum Modeling of Microstructure 
Instabilities and Self-Organization

Continuum Rate Equations for concentrations

Ginzburg-Landau Dynamics Give Amplitude
Equation for Patterns; bc= critical bifurcation
Parameter


