

SCIDAC Center for Extended MHD Modeling

EXTENDED MHD MODELING: BACKGROUND, STATUS AND VISION

Dalton D. Schnack Center for Energy and Space Science Science Applications International Corp. San Diego, CA

OVERVIEW

- The Extended MHD model
- The computational challenges:
 - Extreme separation of time scales
 - Extreme separation of spatial scales
 - Extreme anisotropy
 - Importance of geometry, boundary conditions
 - Causality: can't parallelize over time!

At least as challenging as hydrodynamic turbulence!

- Present computational approaches:
 - Implicit time differencing
 - Specialized spatial grids
- Status of present models
- Vision for integrated modeling

DEFINITIONS

- Hydrodynamics A mathematical model that describes the motion of a continuous, isotropic fluid
- Magnetohydrodynamics (MHD) A mathematical model that describes the motion of a continuous, electrically conducting fluid in a magnetic field
 - Hydrodynamics and Maxwell equations coupled through Lorentz body force and Ohm's law
- Ideal MHD the fluid has infinite electrical conductivity (zero resistivity)
- Resistive MHD The fluid has finite conductivity and resistivity
- Extended MHD additional effects of electron dynamics and/or non-Maxwellian species

MODERN TOKAMAKS ARE RICH IN MHD ACTIVITY

Example: DIII-D shot 86144 18-Aug-00 09:04:47 86144 *104 1.0 PINJ 3/2 NTM 2/1 wall locking 6.0 BETA(%) 4*ht/(aB *10-4 7.5 n=2 BRMS (T Mm *10⁻³ 1.5 n=1 BRMS (T) 1/1 sawteeth *10¹⁶ M 2.0 DALPHA Disruption 2000 1000 1500 2500 3000 3500 4000 TIME (msec)

- •Sawtoothing discharge •3/2 NTM triggered at 2250 msec
- •2/1 locks to the wall

MODELING REQUIREMENTS

Slow evolution

Nonlinear fluid model required

• Plasma shaping

Realistic geometry required

High temperature

Large "Reynolds' numbers"

Low collisionality

Extensions to resistive MHD required

Strong magnetic field

Highly anisotropic transport required

Resistive wall

Non-ideal boundary conditions required

APPROACHES

• Quasi-equilibrium:

 $\nabla p = \mathbf{J} \times \mathbf{B} + \text{constraints}$

- "Magnetohydrostatics" (MHS?)
- Eliminates all waves
- Basis for 1-1/2 dimensional transport models
- Extension to 3-D?
- Time dependent
 - Solve 2-fluid equations
 - Retain all normal modes
 - Focus of present SciDAC efforts

FLUID MODELS

- Kinetic models of plasmas based on distribution function for • each charge species
- Satisfies kinetic equation ۲

$$\frac{df_{\alpha}}{dt} = \sum_{\beta} C[f_{\alpha}, f_{\beta}]$$

 $f_{\alpha}(\mathbf{x}, \mathbf{v}, t)$ - six dimensions plus time - computationally impractical for time scales of interest

- Fluid models derived by taking successive velocity moments of kinetic equation
 - Reduce dimensionality by 3
- Hierarchy of equations for n, v, p, Π, q, \dots
- Equations truncated by closure relations
 - Express high order moments in terms of low order moments
 - Capture *kinetic effects* in these moments
- Result is Extended MHD

• Maxwell (no displacement current):

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$
 , $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$

• Momentum, energy, and continuity for each species ($\alpha = e, i$):

$$m_{\alpha}n_{\alpha}\left(\frac{\partial \mathbf{v}_{\alpha}}{\partial t} + \mathbf{v}_{\alpha} \cdot \nabla \mathbf{v}_{\alpha}\right) = -\nabla \cdot \mathbf{P}_{\alpha} + q_{\alpha}n_{\alpha}\left(\mathbf{E} + \mathbf{v}_{\alpha} \times \mathbf{B}\right) + \sum_{\beta}\mathbf{R}_{\alpha\beta} + \mathbf{S}_{\alpha}^{m}$$
$$\frac{\partial p_{\alpha}}{\partial t} + \mathbf{v}_{\alpha} \cdot \nabla p_{\alpha} = -\frac{3}{2}p_{\alpha}\nabla \cdot \mathbf{v}_{\alpha} - \mathbf{P}_{\alpha} : \nabla \mathbf{v}_{\alpha} - \nabla \cdot \mathbf{q}_{\alpha} + \mathbf{Q}_{\alpha}$$
$$\frac{\partial n_{\alpha}}{\partial t} = -\nabla \cdot (n_{\alpha}\mathbf{v}_{\alpha}) + \mathbf{S}_{\alpha}^{n}$$

• Current and quasi-neutrality:

$$\mathbf{J}_{\alpha} = n_{\alpha} q_{\alpha} \mathbf{v}_{\alpha}, \qquad n = n_{\mathbf{e}} = Z n_{j}$$

• Add electron and ion momentum equations:

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla \cdot \mathbf{P}' + \mathbf{J} \times \mathbf{B}$$

• Subtract electron and ion momentum equations (Ohm's law):

All effects beyond resistivity constitute Extended MHD

COMPUTATIONAL CHALLENGES

- Extreme separation of time scales
 - Realistic "Reynolds' numbers"
 - Implicit methods
- Extreme separation of spatial scales
 - Important physics occurs in internal boundary layers
 - Small dissipation cannot be ignored
 - Requires grid packing or adaption
- Extreme anisotropy
 - Special direction determined by magnetic field Accurate treatment of $\mathbf{B} \cdot \nabla$ operator is important
 - Requires specialized gridding

SEPARATION OF TIME SCALES

Lundquist number:
$$S = \frac{\tau_R}{\tau_A} \sim 10^8 >> 1$$

Explicit time step impractical:

$$\Delta t < \frac{\Delta x}{L} \tau_A \approx \frac{\tau_A}{N} <<<< au_{evol}$$

Require implicit methods

IMPLICIT METHODS

- Partially implicit methods
 - Treat fastest time scales implicitly
 - Time step still limited by waves
- Semi-implicit methods
 - Treat linearized ideal MHD operator implicitly
 - Time step limited by advection
 - Many iterations
- Fully implicit methods
 - Newton-Krylov treatment of full nonlinear equations
 - Arbitrary time step
 - Still a research project

LINEAR SOLVER REQUIREMENTS

- Extremely large condition number : > 10¹⁰!!
 - Specialized pre-conditioners
 - Anisotropy
- Ideal MHD is self-adjoint
 - Symmetric matrices
 - CG
- Advection and some 2-fluid effects (whistler waves) are not selfadjoint
 - Need for efficient non-symmetric solvers
- Everything must be efficient and scalable in parallel
- Should interface easily with F90

SEPARATION OF SPATIAL SCALES

- Important dynamics occurs in internal boundary layers
 - Structure is determined by plasma resistivity or other dissipation
 - Small dissipation cannot be ignored
- Long wavelength along magnetic field
- Extremely localized across magnetic field:

$$\delta IL \sim S^{-\alpha} \ll 1 \text{ for } S \gg 1$$

 It is these long, thin structures that evolve nonlinearly on the slow evolutionary time scale

EXTREME ANISOTROPY

- Magnetic field locally defines special direction in space
- Important dynamics are extended along field direction, very narrow across it
- Propagation of normal modes (waves) depends strongly on local field direction
- Transport (heat and momentum flux) is also highly anisotropic

==> Requires accurate treatment of operator $\mathbf{B} \cdot \nabla$

Inaccuracies lead to "spectral pollution" and anomalous perpendicular transport

GRIDDING AND SPATIAL REPRESENTATION

- Spatial stiffness and anisotropy require special gridding
 - Toroidal and poloidal dimensions treated differently
- Toroidal (ϕ , primarily along field)
 - Long wavelengths, periodicity => FFTs (finite differences also used)
- Poloidal plane (*R*,*Z*)
 - Fine structure across field direction
 - Grids aligned with flux surfaces (~ field lines)
 - Unstructured triangular grids
 - Extreme packing near internal boundary layers
- Finite elements
 - High order elements essential for resolving anisotropies
- Dynamic mesh adaption in research phase

POLOIDAL GRIDS

DIII-D poloidal cross-section with flux aligned grid (NIMROD)

Circular poloidal cross-section with triangles and grid packing (M3D)

Poloidal grids from SciDAC development projects

BEYOND RESISTIVITY - EXTENDED MHD

- 2-fluid effects
 - Whistler waves (Hall term) require implicit advance with non-symmetric solver
 - Electron inertia treated implicitly
 - Diamagnetic rotation may cause accuracy, stability problems
- Kinetic effects influence of non-Maxwellian populations
 - Analytic closures
 - Seek *local* expressions for Π , q, etc.
 - Particle closures
 - Subcycle gyrokinetic δf calculation
 - Minority ion species beam or α -particles

STATUS

- 2 major SciDAC development projects for time-dependent models
 - M3D multi-level, 3-D, parallel plasma simulation code
 - Partially implicit
 - Toroidal geometry suitable for stellarators
 - 2-fluid model
 - Neo-classical and particle closures
 - NIMROD 3-D nonlinear extended MHD
 - Semi-implicit
 - Slab, cylindrical, or axisymmetric toroidal geometry
 - 2-fluid model (evolving computationally)
 - Neo-classical closures
 - Particle closures being de-bugged

Both codes have exhibited good parallel performance scaling

• Other algorithms are being developed in the fusion program

STATUS - RESISTIVE MHD

Sawtooth in NSTX computed by M3D

Stellarator ballooning mode computed by M3D

STATUS - RESISTIVE MHD

Secondary magnetic islands generated during sawtooth crash in DIII-D shot 86144 by NIMROD

STATUS - EXTENDED MHD

- Effect of energetic particle population on MHD mode
- Subcycling of energetic particle module within MHD codes
- M3D agrees well with NOVA2 in the linear regime
- Energetic particles are being incorporated into NIMROD

STATUS - EXTENDED MHD

Neo-classical tearing modes with NIMROD using analytic closure

NEXT STEP - INTEGATED MODELING

- Non-local kinetic physics, MHD, and profile evolution are all interrelated
 - Kinetic physics determines transport coefficients
 - Transport coefficients affect profile evolution
 - Profile evolution can destabilize of MHD modes
 - Kinetic physics can affect nonlinear MHD evolution (NTMs, TAEs)
 - MHD relaxation affects profile evolution
 - Profiles affect kinetic physics
- Effects of kinetic (sub grid scale) physics must be synthesized into MHD models
 - Extensions to Ohm's law (2-fluid models)
 - Subcycling/code coupling
 - Theoretical models (closures), possibly heuristic
- Effects of MHD must be synthesized into transport models
- Predictions must be validated with experimental data

VISION: VDE EVOLUTION

VISION: SAWTOOTH CYCLE

ENABLING COMPUTER SCIENCE TECHNOLGIES

- Largest, fastest computers!
 - But intermediate computational resources often neglected, and...
 - The computers will never be large or fast enough!
- Algorithms
 - Parallel linear algebra
 - Gridding, adaptive and otherwise
- Data structure and storage
 - Adequate storage devices
 - Common treatment of experimental and simulation data
 - Common tools for data analysis
- Communication and networking
 - Fast data transfer between simulation site and storage site
 - Efficient worldwide access to data
 - Collaborative tools
 - Dealing with firewalls
- Advanced graphics and animation

SUMMARY

- Predictive simulation capability has 3 components
 - Code and algorithm development
 - Tightly coupled theoretical effort
 - Validation of models by comparison with experiment
- Integration required for:
 - Coupling algorithms for disparate physical problems
 - Theoretical synthesis of results from different models
 - Efficient communication and data manipulation
- Progress is being made with Extended MHD
 - Integration of energetic ion modules into 3-D MHD
 - Computationally tractable closures
 - Resistive wall modules

Need to bring a broader range of algorithms and codes to bear for overall fusion problem

