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1. Brief description of GYRO
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SciDAC Plasma Microturbulence Project (PMP)

Code Lab Type Flux-Tube Global δA‖ δB‖ Shape

GS2 UM/IFS Euler x x x x

GTC PPPL PIC x

TUBE UCol PIC x x

PG3EQ LLNL PIC x

GYRO GA Euler x x x x
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Description of GYRO: Algorithms

• GYRO solves the 5-dimensional Gyrokinetic-Maxwell equations in

shaped (κ, δ, ∆) plasma geometry.

• Discretized on an Eulerian grid, and thus free of statistical noise.

• Radially global; able to accomodate arbitrary radial profile variation of

q(r), Ti(r), ne(r), etc.

• Toroidally spectral (single-n to full torus) with field-aligned

coordinates of Miller:

f(r, ϕ, θ, λ, E) =
∑

n

e−in[ϕ−q(r)θ]fn(r, θ, λ, E)

such that (b · ∇)[ϕ − q(r)θ] = 0.
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Description of GYRO: Algorithms

• Electromagnetic fluctuations with real electrons (mi/me = 3600).

• Electron parallel motion treated implicitly, and other dynamics

explicitly, using Implicit-Explicit (IMEX) Runge-Kutta time-integration

scheme.

• Old explicit version documented in [1].
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Description of GYRO: Performance Issues

• GYRO is portable. Build and runs on following machines with

specification of single environment variable:

– this laptop

– GA Linux clusters (PII, PIII and P4).

– NERSC, SDSC and ORNL IBM Power3

– ORNL IBM Power4

– ORNL SGI Itanium (Pat Worley, ORNL)

– ORNL Cray X1 (Mark Fahey, ORNL).

• 64 MSPs on Cray X1 better than 512 Power3 processors.

• Balanced performance on all architectures (IA32, PowerPC, Vector)
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2. Comprehensive DIII-D Simulations
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DIII-D Simulations: Reference Discharges

• For some time now, we have been studying Bohm-scaled DIII-D

L-mode discharges 101381 (ρ∗ = 0.0025) and 101391 (ρ∗ = 0.004).

• Algorithmic refinements in combination with Implicit-Explicit

Runge-Kutta scheme solved electron box mode problem and allowed

operation at reasonable timestep (limited by nonlinear processes).

• Reruns of the DIII-D cases in early 2003 used real mass ratio

(mi/me = 3600) and all physics (finite-β, equilibrium sheared E ×B

rotation) operative [2].
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DIII-D Simulations: Transport Stiffness

Sensitivity studies show so-called transport stiffness effect for changing

dTi/dr, even for electron transport:
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DIII-D Simulations: Best Results

Based on the sensitivity studies, we used -10% T ′
i and re-ran at higher

resolution to obtain a remarkable result for the full ion transport profile

[show movie]:
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DIII-D Simulations: What is the effect of β?

For our DIII-D L-mode simulations, finite-β effects are strong in the core,

but weak beyond r/a = 0.6 (and reduce electron layer response).
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3. The Local Limit of Global Simulations
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Local Limit: GTC runs presented in PRL

• Upon publication in PRL [3], it was apparent that GTC results at small

ρ∗ were not in agreement with Cyclone local result (PG3EQ, TUBE,

GS2, GYRO).
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Local Limit: GTC runs presented at IAEA

• Subsequent IAEA results [4] showed the anomaly reduced but still

apparent, leading to the question: is there a problem with the local

(flux-tube) limit?
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Possible Explanations

• The original GTC-PRL simulations used an unshifted circular geometry

model which differed from the s − α model used by PG3EQ/TUBE/

GS2/GYRO in certain features.

• The IAEA work [4] (as we understand it) eliminated this difference, and

then argued that the higher GTC value might be a consequence of

nonperiodic boundary conditions, large radial domain size and radial

variation of ω∗, q, s and r/R used in the latter calculation.

• Using the same radial profiles at the GTC case, we ran GYRO over a

wide range of ρ∗. No matter what variations were tried, we recovered

the local limit in all cases.
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Local Limit Recovered

• All GYRO runs (and many, many were carried out over a one-year

period) confirmed the Cyclone value as the upper bound.
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Comparison with GS2 Local Results

• GS2 local runs agree with global GYRO run at interior radii (left)

• Beware: Long-time averages are required to achieve statistical

steady-state at large system-size (right)
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A Word About Radial Profiles

• The customary setup [5, 6, 7, 3, 8, 9] for global simulations puts the

largest instability drive at the centre of the simulation domain, with

vanishing drive in the vicinity of the simulation boundary.

• In experiments, however, 1/LT does not show this trend but rather

tends to increase from core to edge, rising sharply near the edge.
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Artificial Profile Shear Can Alter Scaling

• The use of a ramped temperature gradient profile gives rise to a

transition at larger ρ∗:
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3. Transport is Smooth Across a

Minimum-q Surface.
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Local Modes in Extended Angle

• Local simulations by Waltz (circa 1995) [15] showed that as magnetic

shear, s, in increased from negative to positive values, χi(s) increases

monotonically through zero.

• We wanted to understand if this trend peristed at finite ρ∗ in a global

simulation which contains a minimum-q (s = 0) region.

• The results which we show consider only adiabatic electrons and

simple ITG physics with no equilibrium sheared E×B rotation.
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Local Modes in Extended Angle

• Ballooning eigenmodes, φB , for s = 1.0 (left) and s = 0.05 (right).

• Ballooning eigenmodes becomes periodic in θp as s → 0.
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Poloidal Harmonics of Local Modes

Poloidal harmonics for s = 1.0 (left) and s = 0.05 (right).
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Local theory gives extended, complicated modes (actually, Mathieu

functions) at low shear.
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Weak-shear Eigenvalue

• When ω is larger than the ion drift and transit and transit frequencies,

the ITG ballooning equation [10, 11] can be solved to yield

ω̂ = ω̂0 + λ1s + λ2|s| (1)

• Above, ω̂0 = ω̂00 − F (ω̂00) and λ1 = F (ω̂0), with

ω̂00 = ωR + i

√

2εn(1 + ηi)

1 + k̂2
− ω2

R , ωR =
1 − 2εn − k̂2(1 + ηi)

2(1 + k̂2)
(2)

and F (z) =

√
εnz

2qk̂

[

1 − z2

2 εn

ηi + 2

(z + ηi + 1)2

]−1

(3)
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Analytical and Numerical Eigenmodes
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Analytical and Numerical Eigenmodes
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Zero-Shear Gap Theory of ITB Formation

• In the literature, we found what we tentatively call the Zero-Shear Gap

(ZSG) theory of ITB formation [12, 13].

• In the context of ZSG, an absence of toroidal coupling in the gap region

is posited to preclude the development of a “global structure of the

toroidal mode” [14]:

• We found this to be a novel idea, and wished to reconcile this idea with

earlier local simulations by Waltz which showed that transport

smoothly increases across the point s = 0 [15].
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Rational Surface Gap

• ZSG theory focuses on an ostensible rarefaction of resonant surfaces

(for a given n) in the neighborhood of s = 0:
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Is There Evidence for ZSG Theory?

• Various works espousing ZSG theory [16, 14, 12] are supplemented by

toroidal PIC simulations.

• It is difficult to draw solid conclusions from any of those simulations

since no curves of χi(r) are given (only electrostatic potential profiles

are shown).

• The use of a strongly peaked temperature profile in [16, 14], with the

peaking inside the s = 0 surface, makes it impossible for the reader to

differentiate gap effects from pressure gradient effects.

• The added claim that the presence of sheared equilibrium poloidal

flow can make the barrier more “efficient” is non sequitur. A strong

effect of flow shear on the barrier dynamics implies that the flow shear

is a cause of transport barrier formation in and of itself.
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Local Modes to the Left and Right

Case r/a s q n kθρs (a/cs)γ

Negative shear 0.4 -0.356 0.929 32 0.297 0.05

Positive shear 0.6 +0.356 0.929 48 0.297 0.11
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Poloidal harmonics: Linear and Nonlinear

• Neither linear (top) nor nonlinear (bottom) runs show a gap.
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Calculation of χi(r)

• The indicator for the onset of an ITB in this context ought to be a drop

in χi(r) in the gap region.

• We see no such drop in any simulations.

• In reality, local (flux-tube) nonlinear simulations are a good

approximation to the global results, even in the vicinity of s = 0.

• The approximation improves as ρ∗ decreases.
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Comparison of Local and Global Simulations
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Confluence of local and Global Results

Flux-tube runs were done at low resolution – increased toroidal resolution

will raise numbers slightly.
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Results are insensitive to box size at ρ∗ = 0.0017.
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