Modeling of Neutral Beam Ion Absorption of High Harmonic ICRF Waves in the DIII-D Tokamak

V.S. Chan

In collaboration with

M. Choi, H. ST. John, J.Candy, C.C. Petty (General Atomics) S. C. Chiu (Sunrise R&M) W.W. Heidbrink (University of California, Irvine) J.F. Jaeger (ORNL)

Joint Meeting of US-Japan Workshop on Theory-Based Modeling and Integrated Simulation of Burning Plasmas and 21COE Workshop on Plasma Theory Kyoto, Japan, December 15-17, 2003

The Monte-Carlo Code ORBIT-RF is Developed to Study Energetic Particle-Wave Interaction

$$\boldsymbol{\eta}_{E0} = \frac{8\boldsymbol{q}_0^2(1+\boldsymbol{S}_0)}{\boldsymbol{R}_0^2\boldsymbol{\Omega}_0}\boldsymbol{K}_{*0} = \frac{2\boldsymbol{\varepsilon}_0^3}{3}\boldsymbol{\alpha}_E$$

S. C. Chiu, V. S. Chan, and Y. A. Omelchenko, Phys. Plasmas 9, 877 (2002).

Motivation

• The absorption of ion cyclotron resonance frequency (ICRF) waves by neutral beam (NB) ions at high ion cyclotron harmonics has been observed experimentally in DIII-D during fast wave current drive.

Experimental Observations

- Anomalously peaked pressure profile was observed in the central region of plasma with a significant enhancement of the measured neutron rate when RF pulses were applied to NB heated discharges.
- Energy spectrum from neutral particles analyzer showed a strong enhancement of the tail energy above the injected beam energy.
- To understand this phenomenon of beam-wave interaction theoretically, a Monte-Carlo RF orbit code, ORBIT-RF, has been upgraded to treat steadystate NB injection and ICRF absorption at higher harmonics, and applied under the DIII-D experimental conditions. Questions:
 - Fraction of RF power absorbed by the NB fast ions
 - Modification of fast ion pressure profile, NBCD and rotation by ICRF

Experimental Observations on Neutron Emission Enhancement, Peaked Beam Ion Pressure and Energetic Tails Formation on DIII-D

ORBIT-RF

Hamiltonian guiding center drift equations are solved to follow the trajectories of test particles in a tokamak geometry under ICRF wave fields and collisions

- P_{ζ} : toroidal canonical momentum
- P_{θ} : poloidal canonical momentum
- ϕ : electric potential (=0), *H*: Hamiltonian

$$\frac{d}{dt}P_{\xi} = -\partial_{\xi}H, \quad \frac{d}{dt}\zeta = \partial_{P_{\xi}}H$$

$$\frac{d}{dt}P_{\theta} = -\partial_{\theta}H, \quad \frac{d}{dt}\theta = \partial_{P_{\theta}}H$$

$$P_{\theta} = I\rho_{||} + \psi, \quad P_{\xi} = g\rho_{||} - \psi_{p}, \quad H = \frac{1}{2}\rho_{||}^{2}B^{2} + \mu B + \phi, \quad \rho_{||} = v_{||}/B$$
where ψ_{p} polidal flux, ψ toroidal flux
 θ poloidal angle, ζ toroidal angle
 $g(\psi_{p})$ poloidal current flowing outside the surface ψ_{p}
 $I(\psi_{p})$ toroidal current flowing inside the surface ψ_{p}

JIFT_Kyoto 2003/vc

Steady State Slowing-down of NB Injected Fast Ions is Modeled

NB Injection Geometry

- Injected neutral particles are all ionized by the background plasma at Z=0.
- Source rate of fast ions generated by NBI, $S(E_b, \lambda, \psi_p, \theta)$, is calculated with the given NB injection power (P_{NB}), beam ion energy (E_b) and tangential radius (R_T) in phase space.
- λ (pitch)= $v_{//}/v$ =(B_TR_T)/(BR)
- ψ_p poloidal flux θ poloidal angle

Particle Weightings are Adjusted to Model Injection of Constant NB Power

• During 1 slowing down time, E_{tot} is injected : $E_{tot} (= P_{NB} * t_s)$

• Using $S(E_b, \xi, \psi_p, \theta_p)$, the initial weightings of each test particle (W_k) are calculated to represent the real number of fast ions generated from the NB source: $W_k = S * t/n$

• The injected fast ions will lose their energy and momentum to the background plasma ions and electrons through pitch-angle scattering and drag.

• The thermalized fast ions ($<1.5T_i$) are replaced in the plasma at the birth energy with a source rate compatible with P_{NB}

• Weightings of replaced fast ions are readjusted to be consistent with constant input power P_{NB}

Absorption of ICRF Wave for High Harmonic is Modeled by Quasilinear RF Operator

JIFT_Kyoto 2003/vc

Simplified Stix Model of |E₊| is Used (Left-hand polarized component)

Wave cone in (r,z) space

• Assuming that ICRF waves exist inside the shaded wedge, the interaction of resonant particles with ICRF wave is effective inside shaded wedge bounded by

$$z = z_{RF} + \tan(\theta_{RF}) \times r$$

• IE+ (r) | is calculated by

$$|E_{+}(r)|^{2} = \frac{\Omega_{oi}}{\omega_{pi}^{2}} \frac{P_{RF}}{dV_{res}} (1 - r^{2}/a^{2})$$

SIMULATION REPRODUCES RF HEATING PHYSICS

20,000 test particles loaded in Maxwellian annulus

Follows fast ion dynamically keeping fast ion contribution to magnetic and frictional torque

Thermalized fast ions "re-injected" to maintain steady-state

Collisions of Beam lons with Background Electrons and Majority lons are Accounted For

• Frequency for slowing-down of fast ions due to Coulomb collisions

$$v = 1.6 \times 10^{-9} A_f^{-1} T_e(r)^{-3/2} n_e(r) Z_f^2 \Lambda_{ef}(r) \left(1 + \left(E_c / E_f \right)^{3/2} \right)$$

 $E_c = 14.8 \times A_f / A_i^{2/3} T_e(r)$

where A atomic mass number

- Λ Coulomb logarithm: $24.0 \log(\sqrt{n_e(r)}/T_e(r))$
- E_f NB injected fast ion energy

 $\vec{E_c}$ critical energy

f stands for the NB injected fast ions

- *i* stands for the background thermal ions
- Frequency for pitch-angle scattering collisions between fast ions and background ions

$$v = 1.8 \times 10^{-7} A_f^{-1/2} E_f^{-3/2} n_i Z_i^2 \Lambda_{if}$$

DIII-D Discharge 96043.02000

DIII-D Discharge 96028.02650

Simulations Conditions

- Mono-energetic Deutrium beam ions at full energy are injected (half and third energy components are ignored).
- Injected input heating powers

- The 4th harmonic cyclotron resonance surface of D beam ion is located approximately at $(R_{res}-R_{maj})/a \approx -0.07$
- Simulations are done for <u>3 slowing down times</u> using <u>5000</u> test particles for beam ions using <u>23</u> processors on FI at GA(approximately <u>1.5</u> hours)
- $Z_{eff}=2.0$ (constant) and $(\psi_{p}, \theta) = (100, 50)$

Beam Ion Driven Current is Benchmarked

• Average Steady State Fast Ion Velocity (<*v_f*>) on Each Flux Surface

$$\left\langle v_{f}(\psi) \right\rangle_{\tau_{s}} = \frac{\sum_{i} \left[\int_{0}^{\tau_{s}} W_{i}(\psi) v_{//i}(\psi) dt \right]}{\sum_{i} \left[\int_{0}^{\tau_{s}} W_{i}(\psi) dt \right]}$$

• Net NB Ion Driven Current Density

$$J_{net} = J_f - \frac{J_f}{Z_{eff}} + \frac{J_f}{Z_{eff}} \left\{ \varepsilon^{\frac{1}{2}} \times \left(1.55 + \frac{0.85}{Z_{eff}} \right) - \varepsilon \times \left(1.55 + \frac{0.85}{Z_{eff}} \right) \right\}$$

 The ORBIT-RF simulation result is benchmarked with ONETWO transport code result

J(r) Computed with ORBIT-RF and ONETWO are in Reasonable Agreement

The Time Averaged Profiles

Tail Energies Extended Beyond Beam Injected Energy during ICRH

96043.2000 $P_{nb}=2.7MW, E_{nb}=80keV, P_{rf}=1.1(MW), |E_{+}|_{res}\sim 2000(V/m)$ 0.002 0.004 **5000 particles** 20000 particles **NB** only **NB** only 0.003 0.0015 **Beam Injection** Energy(80 keV) Beam Injection Energy(80 keV) 0.001 0.002 0.001 0.0005 **NB+ICRF NB+ICRF** 0.0 100 150 Energy (keV) 50 100 150 Energy (keV) 200 50 200 0 0

• Tail energy enhancement validated with 5000 and 20000 particles with similar qualitative

GENERAL ATOMICS

features

Time Evolution of Spatial Distribution of Energetic D Beam Ions Shows Energetic Tail Peaking On-Axis

NATIONAL FUSION FACILITY SAN DIEGO

Velocity Space Distributions of Energetic D Beam lons at $3\tau_s$ Validated the Physics of ICRH

Neutron Enhancement (S_n)

• Neutron enhancement is calculated using

$$S_{n} = \left[\sum_{i=1}^{n} \langle \sigma v \rangle_{i} w_{i}\right]^{NB+RF} / \left[\sum_{i=1}^{n} \langle \sigma v \rangle_{i} w_{i}\right]^{NB_{-}only}$$

 The ORBIT-RF simulation results are compared with the experimental ones for two DIII-D discharges, 96043.02000 and 96028.02650 with the very different plasma parameters

Experimental and Theoretical Results for the neutron Enhancement S_n

1998 Experimental and Previous Simulation Results

 E_{nb} =73-86keV, P_{nb} <2.7MW P_{RF} >0.7MW, $n_{//} \approx 5$, f_{RF} =60MHZ, R0 \approx 1.7m, a \approx 0.6m, B_0 =1.9T R_T =76cm(Right)-115cm(Left)

 $I_p = 1.2MA, n_e = 3 \times 10^{13} \text{ cm}^{-3}$

• Experimental data showed the enhancement of measured neutron rates of 1 ~ 2

• Previous ray tracing calculations using similar experimental parameters showed higher absorbed power of beam ions (~40%)

Comparison results

96043.02000	96028.02650
$n_{e0} = 0.51 \times 10^{14} (cm^{-3})$	$n_{e0} = 0.23 \times 10^{14} (cm^{-3})$
$ E_{+} = 2000(V/m)$	$ E_{+} = 800(V/m)$
$E_{nb} = 80 \text{ keV}$	$E_{nb} = 77 \text{ keV}$
Prf = 1.1 MW	Prf = 0.7 MW
$P_{NB} = 2.7 \text{ MW}$	P _{NB} = 1.2 MW

	Ехр	Simulations		
	Sn	Sn	E ₊ (V/m)	P _{ab_RF} (%)
96043	1.36	1.25	2000	12.3
		1.1	1000	6.3
96028	1.1	1.19	800	6.0

Beam Ion Driven Current seems slightly reduced due to ICRF wave absorption

Reduction of Beam Current Possibly due to Trapping

E₊ and E₋ using AORSA2D at ORNL (by F.Jaeger) for 96043.02000

Summary and Discussion

• The experimentally observed interaction between beam ions and ICRF waves at 4th harmonic during RF pulses of NB heated plasma is reproduced in the ORBIT-RF simulations within reasonable agreement using estimated magnitude of $|E_+|$ based on a simple model .

- The tail energies of beam ions are extended above the injected beam energy and is peaked on-axis

- The calculated neutron enhancement using quasilinear high harmonic RF operator is in qualitative agreement with experimental results

• There is some sensitivity of the results to the magnitude of $|E_+|$, hence a more accurate wave model is required for quantitative comparisons and predicition.

Application of ORBIT-RF to ITER/BPX

Important RF issues for ITER

• High harmonic ICRF absorption by energetic particles e.g. NB, alphas - damping on energetic particles with large $k_{\perp}\rho$ (Choi, RF Conf. 2003)

- MHD stabilization of energetic tails generated by ICRF (Chan, APS 2002)
- Non-inductively driven FWCD
- Plasma rotation and momentum transport of ICRF produced energetic tails (Chan, Phys. Plasmas 2002)
- Synergism of NBI and ICRF heating

Improvements to ORBIT-RF Required

- Coupling of ORBIT-RF to a full-wave code and iterative full-wave calculation with non-Maxwellian fast ions
- Adding modules for energetic ion losses due to charge exchange and orbit loss-cones
- Self-consistent radial electric field effect on particle drift motion
- Multiple-resonant layer wave heating in a large device
- Coupling to a full-antenna spectrum

