Predictive Integrated Modeling Simulations Using a Combination of NTCC H-mode Pedestal and Core Models

Arnold H. Kritz

Department of Physics Lehigh University Bethlehem, PA 18015

US-Japan JIFT Workshop, Kyoto Japan

December 15-17, 2003

Outline

- Objectives of predictive integrated modeling
- Codes used by Lehigh Group and collaborators
 - BALDUR, JETTO, TRANSP, ASTRA, NTCC, HELENA, MISHKA
 - Theory-based core transport models
 - Theory motivated models for H-mode pedestals and ELMs
- Applications of BALDUR code in studies of tokamak discharges
 - Parameter scans for discharges in a variety of tokamaks under a variety of conditions
 - Explore different discharge scenarios
- Combined core and edge modeling of H-mode discharges
 - Combine separate core and H-mode pedestal models
 - Develop continuous, self-consistent model for the core, H-mode pedestal transport barrier, and ELMs
 - Carry out specialized simulations to develop more sophisticated models for the H-mode pedestal and ELMs
- Development of predictive integrated modeling codes that are more flexible and easier to use
 - Description of NTCC effort, particularly the NTCC Module Library
- Collaborations

Objectives of Integrated Modeling

Integrated modeling of tokamaks is used for the following reasons:

- Predict the expected fusion power production in planned burning plasma experiments
 - Using theory-based models
- Understand the physics of confinement as well as optimize the performance of tokamaks
 - Vary operating parameters such as density or auxiliary heating power
 - Explore different discharge scenarios
- Study the interaction between different physical phenomena, e.g.:
 - Interaction between fusion heating power, transport, and the plasma temperature profiles
 - Effect of the H-mode pedestal on global confinement
- Provide plasma profiles for more detailed studies
 - Such as studies of ELMs, toroidal Alfvén modes, sawtooth oscillations, or other MHD instabilities

Integrated Modeling of Tokamaks

BALDUR Integrated Modeling Code at Lehigh

- Predicts time-dependent profiles for
 - electron and ion temperature
 - each ion density (hydrogenic and impurity)
 - magnetic q(r,t)
 - neutrals
- Self-consistent computations of
 - sources (such as NBI heating or fusion reactions)
 - sinks (such as impurity radiation)
 - transport fluxes
 - MHD equilibrium
 - large scale instabilities (such as sawtooth oscillations)

Stiff Transport Models Used in BALDUR Simulations

• Choice of transport models:

- Multi-Mode transport model (Lehigh)

- Theory-based transport model that matches a wide range of experimental data for L-mode, H-mode, and other tokamak plasmas
- Predicts impurity and hydrogenic particle transport as well as electron and ion thermal transport
- Agrees with non-linear gyro-kinetic turbulence simulations
- GLF23 transport model (GA)
 - Theory-based transport model that was originally calibrated using non-linear gyro-fluid turbulence simulations
- Mixed-Bohm/gyro-Bohm (mB/gB) transport model (JET)
 - Empirical transport model
 - Bohm scaling ($\chi \propto \rho c_s$) dominates mB/gB (JETTO) model in most tokamak simulations

Temperature and Density Predictions for L-mode and H-mode Discharges

- Compare Multi-Mode (MMM95) and mB/gB transport models with experimental data
 - Boundary conditions from experimental data
 - –13 L-mode DIII-D and TFTR discharges, ρ_{*}, I_P, n_e, and P scans
 - Phys. Plasmas 8 (2001) 975
 - -22 H-mode JET and DIII-D discharges, ρ_* , υ_* , β , isotope, n_e , P, and κ scans
 - Phys. Plasmas 8 (2001) 964

Definitions of Profile Statistics

- Relative deviation between simulation profile $T^{\text{simulation}}(R_i)$ at each experimental data point $T_i^{\text{experiment}}$ $\delta_i \equiv \frac{T^{\text{simulation}}(R_i) - T_i^{\text{experiment}}}{T_{\text{max}}^{\text{experiment}}}$
 - Note that deviation at each data point is normalized by the maximum value for that profile, $T_{\max}^{experiment}$
 - This definition gives equal weight to all data points
- Relative RMS deviation for each profile with *N* data points
- Offset for each profile

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \delta_i^2}$$

Offset
$$= \frac{1}{N} \sum_{i=1}^{N} \delta_i$$

Comparison of MMM95 and GLF23 Average RMS Deviation and Offset

- RMS deviations and Offsets are averaged over 23 JET and DIII-D discharges
 - RMS deviations are between 11% and 15%
 - For both GLF23 and MMM95
 - For both ion and electron temperature
 - Offsets are between –7% and +6%
 - MMM95 model slightly overpredicts T_i and T_e profiles
 - GLF23 model slightly underpredicts the *T*_e profile
 - Errors in this range are probably not significant given the uncertainty in the experimental data

Variety of Simulation Studies Carried out Using the BALDUR Code

- Mega-Amp Spherical Tokamak (MAST) - Iow aspect ratio tokamak
 - Used both the JETTO (mB/gB) and Multi-Mode (MMM95) transport models together with NCLASS neoclassical, which plays a large role in ion thermal transport
 Phys. Plasmas 9 (2002) 3930
- MMM95 used in simulations of Tore-Supra
 - Lower-Hybrid heating and current drive in a helium plasma with carbon impurity Phys. Plasmas 9 (2002) 4241

Variety of Simulation Studies Carried out Using the BALDUR Code

- Alcator C-Mod high density ICRH heated ELM-free H-mode discharges
 - Used MMM95 and mB/gB model in simulations of seven L-mode and H-mode discharges
 - Two models have different dimensionless scaling but match data about equally well Phys. Plasmas 8 (2001) 4403
- Effect of Hydrogen isotope mass in JET discharges
 - Change in profile shapes effect confinement
 - Phys. Plasmas 6 (1999) 4607

Simulations Predict Formation and Motion of Internal Transport Barriers

BALDUR simulations using Multi-Mode model to predict formation and motion of internal transport barriers (ITBs) in JET and DIII-D

Simulations follow evolution from Ohmic \rightarrow L-mode \rightarrow formation of ITB \rightarrow H-mode \rightarrow motion of ITB

Flow shear and finite β effects both play a role Phys. Plasmas 7 (2000) 2898

Research Plan for Combined Core Edge Modeling of H-mode Discharges

- **1. Combine separate core and H-mode pedestal models**
 - Pedestal model used for boundary conditions of core simulation
 - No time-dependent model for the ELMs
- 2. Develop continuous, self-consistent model for the core, H-mode pedestal transport barrier, and ELMs to predict:
 - Height, width, and shape of pedestal
 - Frequency and radial extent of ELMs
- 3. Carry out specialized simulations to develop more sophisticated models for the H-mode pedestal and ELMs
 - Linear MHD instability codes, HELENA, MISHKA and ELITE, to predict the instability that results in ELM crashes
 - Non-linear MHD instability codes to predict the effect of ELMs
 - Turbulence simulations to predict and understand edge transport

H-mode Pedestal Temperature and Density Models

Static models developed at Lehigh for the pedestal temperature and density calibrated against 533 type I ELMy H-mode discharges in the pedestal database

Pedestal width - shearing rate equal to the linear growth rate yields $\Delta \propto \rho_{\rm tor} s^2$ M. Sugihara, *et al.*, Nucl. Fusion 40 (2000) 1743

Pressure gradient limited by first ballooning mode stability condition

Profile RMS Deviations for 33 H-mode Discharges

Self-consistent Model for Pedestal and ELMs

Dynamic models being developed to predict:

Pedestal Profiles

- Pedestal Width
- Pedestal Height
- Pedestal Shape

Dynamics of ELMs

- ELM Frequency
- Width of the region affected by ELMs
- Transport between ELMs
- Effects of pedestal profiles

Overall objective is to follow plasma evolution Ohmic → L-mode → H-mode → ELMs in integrated predictive time-dependent modeling of tokamak plasmas

Theory-based models being developed for pedestal and ELMs at the edge of H-mode plasmas

- Flow and magnetic shear stabilization of anomalous transport
 - Same transport model used for core and edge
 - Local self-consistent calculation of of profiles from core through pedestal

Core/Edge Simulations with JETTO Code JET Power Scan

- Examine dependence of the height of the H-mode pedestal on the injected power
 - Do the pedestal properties depend on injected power?
 - Compute the MHD mode instability that might trigger ELMs
- Tools used to carry out simulation studies
 - JETTO, integrated predictive modeling code
 - Includes combined core and edge modeling
 - Yields equilibrium profiles for stability analysis
 - HELENA, equilibrium and infinite-n stability code
 - Refines equilibrium for use with MISKHA code
 - Establishes region where infinite-*n* ideal ballooning mode is unstable
 - MISHKA, stability code
 - Determine growth rate of most unstable ballooning and current driven modes
 - Applied for toroidal modes with *n*=1 to *n*=14

Integrated Predictive Transport Code (JETTO)

- Evolves plasma core and pedestal profiles, such as $I_{\rm p}$, $T_{\rm e}$, $T_{\rm i}$ and $n_{\rm e}$, needed for stability analysis
- mB/gB model for core transport
- Transport thought the pedestal is taken to be ion neoclassical transport at the top of the pedestal
 - Turbulent transport is neglected within the pedestal region
 - Neoclassical transport calculated using NCLASS
- An ELM crash occurs when an instability condition is satisfied in the pedestal region
- Simplified stability model used for triggering ELMs
 - ELMs triggered by pressure-driven ballooning mode
 - Check appropriateness of α_c by stability codes
 - ELMs triggered by current-driven peeling mode
 - Details in H. R. Wilson *et al.*, Nucl. Fusion, 40, 713 (2000)

Evolution of Pedestal Current Density Between ELMs

• Sequence of physical effects as heating power is increased:

- Pedestal pressure gradient and resulting bootstrap current rise more rapidly after each ELM crash as heating power is increased
- Rise in total pedestal current density is impeded by back EMF
- These ELM crashes are caused by current-driven MHD instability
- Hence pedestal pressure gradient can rise to higher values as heating power is increased before the pedestal current can cause ELM crash

Stability Analysis using HELENA and MISHKA Codes

- Stability s- α diagram for 95% flux surface with growth rate greater than 0.03 of Alfven frequency
 - Operational points are indicated for 3 flux surfaces
- Top of barrier is limited by kink/peeling modes
 - Maximum normalized pressure gradient α increases (4.4, 4.9 and 5.2) as P_{heat} increases

Dynamic Simulation of Pedestal and ELMs

- As heating power is increased, ASTRA simulation follows plasma evolution from L-mode → H-mode → ELMy H-mode
 - Flow shear reduces anomalous transport to build H-mode pedestal
 - Steep pressure gradient drives bootstrap current in the pedestal
 - Ballooning or peeling instability triggers periodic ELM crashes

Temperature profile in outer half of the plasma as a function of time through an ELM cycle

US-Japan JIFT Workshop, Kyoto Japan

December 15-17, 2003

Simulation of an ELM Cycle

- Model for an ELM cycle illustrating the different physical processes that play a role
- The following sequence of events occur during an ELM cycle, starting just after an ELM crash:
 - Normalized pressure gradient, $\alpha,$ increases as the pedestal rebuilds
 - Pedestal current density
 - First decreases, due to high resistivity
 - Then increases, due to bootstrap current
 - Magnetic shear, s, first increases and then decreases, inversely with pedestal current density
 - ELM crash occurs when α exceeds $\alpha_{\text{-}}$

Normalized Pressure Gradient

US-Japan JIFT Workshop, Kyoto Japan

December 15-17, 2003

Need Predictive Integrated Modeling Codes that are More Flexible and Easier to Use

- Issues:
 - Integrated modeling codes bring together many different physical processes (transport, sources, sinks, MHD instabilities)
 - Hence, integrated modeling codes are large and hard to use
 - Most integrated modeling codes are more than 20 years old
 - These legacy codes are not up to modern software standards
 - Running integrated modeling code is like running an experiment
- Future:
 - Use modern software engineering to develop new integrated modeling codes
 - Modules with clearly defined interfaces for each physical process
 - Flexible framework in which modules can be easily switched
 - Seamless access to database to store the results of simulations and to access experimental data
 - Modern graphical presentation of simulation results

Improved Integrated Modeling Code – NTCC

- NTCC team established a path for producing a modern integrated predictive simulation code
 - The objective is to have all relevant physics models available in one code
- NTCC demonstrated that a geographically distributed community team can function effectively in developing a simulation code
 - Object-oriented software aids in this process
- Community-owned integrated modeling code must be reliable and user friendly
 - A team is needed to maintain the large required infrastructure
 - Researchers are more likely to use a community-owned code that has been thoroughly tested, validated, and documented
- Predictive integrated simulations will provide an important tool for the design and study of burning plasma experiments
- NTCC team developed a Web invocable code using NTCC Library transport modules

Example of Use of Web-Invocable NTCC Code

NTCC code simulations were used to test:

- Effects of ExB shearing from experimental ω_{ExB} to no shearing
- Effects of changing Z_{eff} (3.2 \rightarrow 1.4) and $n_e(\rho)$ after the improved state is established
- ⇒ Neon injection may be used as a trigger

Nucl. Fusion 41 (2001) 317

US-Japan JIFT Workshop, Kyoto Japan

December 15-17, 2003

NTCC Module Library

- Web-based, community-owned library of modules
- Each module is self-contained software that is:
 - designed to carry out a specific task (transport model, heating model, numerical technique, ...)
 - isolated, with a clearly defined interface (such as an argument list to a procedure or subroutine)
 - with driver program, test cases, and documentation
 - Library modules with different levels of sophistication are encouraged
- NTCC Module Library available at http://w3.pppl.gov/NTCC
- Modules are reviewed and then subject to approval by the six member NTCC Module Library Committee
 - Insures that standards established by the community are satisfied.
- 44 modules now in the library (20 modules reviewed and approved)
- Modules extracted from large integrated modeling codes are now being shared among codes
 - Module development generally results in improved documentation and advances in physics content

Categories of Modules

Category	Number	Comments
Anomalous Transport Models	6	Transport of heat, particles, and momentum
Neoclassical Transport Models	2	Particle, momentum, and thermal transport
Heating	5	Radio Frequency and Neutral Beam heating
Equilibrium and Stability Solvers	7	Force balance and MHD stability
MHD Stability	1	Sawtooth mixing module
Divertor/Edge/Pedestal	1	To compute boundary conditions
Neutral Gas Models	2	Source of ions and radiative losses
Atomic/Nuclear Reaction Rate Data	1	Ionization, recombination, radiation, and fusion reaction rates
Numerical Tools	7	Interpolation, integration, etc
Portability Tools	4	To facilitate transfer of codes from one computer to another
Data Analysis and Visualization	8	To facilitate database and plotting

Advantages of Module Library

- Reduces the authors' time regarding requests for distribution and installation of modules
- Library as origin of shared modules aides version control
 - Modules are kept up-to-date in one place
 - As upgrades evolve, it is straight-forward to update modules that are being used in codes
- Review process helps to improve the quality of modules
- Library encourages use of modern coding practices
 - Particularly encapsulation and inheritance
- High cost of maintaining non-modular legacy code
 - Modules help to reduce redundancy
 - Particularly when similar physics is used in many codes
- Modules encourage community collaboration
- Library provides Web-based documentation

Review Process

- Any researcher can submit a module through the Web page http://w3.pppl.gov/NTCC/guidelines/guide.html
 - As soon as a module is submitted, it is made available on the NTCC Module Library Web page http://w3.pppl.gov/NTCC

Modules are reviewed to ensure they conform to standards

- The review process is open, so that the reviewer and the author can communicate as needed to improve the module
 - In some cases, the review process has led to the reorganization or major improvement of the module
 - In most cases, the review process produces improvements in the documentation or results in the repair of minor problems

Once a satisfactory review has been completed

- The review is submitted to the Module Library committee
- Is accepted after an affirmative vote by a majority of the committee members (four out of six)
- Twenty modules have passed the review process, to date
 - Marked with a green star on the Web page

Module Issues

- The primary goal of the NTCC Module Library is to allow researchers to share parts of computer codes
- Developers have faced the following challenges:
 - Some modules are very large and complex
 - For example, the NUBEAM Neutral Beam Injection module
 - Programmers have very different styles and requirements
 - Most physicists write programs for their own use, rather than learning all the nuances of advanced object oriented programming
 - Hence, many compromises made in the NTCC standards and Module Library standards need to be improved
 - Modules extracted from legacy codes that were run in batch mode have to be adapted for use in more interactive codes
 - Developers and users have gone through a learning curve

NTCC Module Work in Progress

- New modules under development:
 - TEQ : Free-boundary plasma equilibrium
 - Prescribe coil currents rather than prescribing boundary shape
 - TORIC : Full wave treatment of ion cyclotron resonance heating
 - For long wavelengths, where ray tracing is not appropriate
 - IMPRAD : Non-equilibrium coronal impurity radiation
 - Advancing the rate equations using ionization, recombination, and transport of ions with multiple charge states
 - Saturated tearing mode model
 - To predict magnetic island widths in tokamaks
 - Porcelli model to predict the onset of sawtooth crashes
 - Pellet injection module
 - FPPMOD : Fokker-Planck module for slowing down of fast ions
 - GTNEUT : 2-D neutrals code for complicated geometries
 - TOQ : Inverse equilibrium solver for vertically asymmetric plasmas
 - NUT 1 : Multi-species core neutrals module

- Integrated modeling involves large teams of researchers
 - Lehigh: G. Bateman, A. Pankin, J. Kinsey, T. Onjun,
 C. Nguyen, and S. Snyder
 - Visitors to Lehigh: I. Voitsekhovitch, V. Parail, J. Weiland,
 P. Strand, T. Davydova, P. Zhu

Other Collaborators: R. Akers, R. Andre, R. Budny, C. Byrom,
A. Dnestrovskij, T. Fredian, M. Greenwald, P. Guzdar,
G. Hammet, W. Horton, G. Huysmans, G. Janeschitz,
J. Lönnroth, D. McCune, M. Murakami, G. W. Pacher,
H. D. Pacher, G. Pereverzev, A. Polevoi, F. Porcelli,
J. Snipes, G. Staebler, A. Sykes, R. Waltz, H. Wilson

- Lehigh group contributed simulations to the 2002 IAEA papers by:

X. Garbet; V. Parail; T. Osborne; J. Kinsey; V. Mukhovatov

- NTCC has involved 24 researchers from 10 institutions

 Integrated predictive modeling capability will be most effectively achieved through international cooperation and collaboration

