REAL-TIME CONTROL OF INTERNAL TRANSPORT BARRIERS IN JET : EXPERIMENTS AND SIMULATIONS

D. Moreau ${ }^{1,2}$, F. Crisanti³, L. Laborde ${ }^{2}$, X. Litaudon², D. Mazon², A. Murari4, T. Tala ${ }^{5}$, R. Albanese ${ }^{3}$, M. Ariola³, M. De Baar ${ }^{6}$, P. De Vries ${ }^{7}$, R. Felton ${ }^{7}$, F. Imbeaux ${ }^{2}$, E. Joffrin², M. Lennholm², V. Pericoli-Ridolfini ${ }^{3}$, A. Pironti ${ }^{3}$, M. Riva ${ }^{3}$, L. Zabeo², K.D. Zastrow ${ }^{7}$ and contributors to the EFDA-JET workprogramme.

${ }^{1}$ EFDA-JET Close Support Unit, Culham Science Centre, Abingdon, OX14 3DB, U. K.

${ }^{2}$ Euratom-CEA Association, CEA-Cadarache, 13108, St Paul lez Durance, France
${ }^{3}$ Euratom-ENEA Association, C.R. Frascati, 00044 Frascati, Italy
${ }^{4}$ Euratom-ENEA Association, Consorzio RFX, 4-35127 Padova, Italy
${ }^{5}$ Euratom-Tekes Association, VTT Processes, FIN-02044 VTT, Finland
${ }^{6}$ Euratom-FOM Association, TEC Cluster, 3430 BE Nieuwegein, The Netherlands ${ }^{7}$ Euratom-UKAEA Association, Culham Science Centre, Abingdon, U. K.

OUTLINE

1. Dimensionless ITB temperature or pressure gradient characterizing ITB's on JET, (also used on Tore Supra, FTU, Alcator C-Mod.
2. Technique for controlling the current and pressure profiles in high performance tokamak plasmas with ITB's : a technique which offers the potentiality of retaining the distributed character of the plasma parameter profiles.
3. First experiments using the simplest, lumped-parameter, version of this technique for the current profile :
3.1. Control of the q-profile with one actuator: LHCD Modelling with CRONOS
3.2. Control of the q-profile with three actuators: LHCD, NBI, ICRH Modelling with JETTO
*** PRELIMINARY***
4. Ongoing experiments on simultaneous real-time control of the current density + temperature gradient profiles.

Challenges of advanced profile control

Early experiments on JET were based on scalar measurements characterising the profiles (ρ_{T}^{*} max) and/or other global parameters $\left(l_{\mathrm{i}}\right)$ HOWEVER

1. ITB = pressure and current (+ rotation ...) profiles

Multiple-input multiple-output distributed parameter system (MIMO + DPS)
2. Nonlinear interaction between $p(r)$ and $j(r)$

Feedback loop interaction

Need more information on the space-time structure of the system Identify a high-order operator model around the target steady state and try model-based DPS control using SVD techniques
D. Moreau et al., Nucl. Fusion 43 (2003) 870

ITB dimensionless gradient criterion

Stabilisation of drift wave microturbulence through flow shear

$$
\rho_{\mathrm{T}}^{*}=\rho_{\mathrm{s}} / \mathrm{L}_{\mathrm{T}} \quad \rho_{\mathrm{T}}^{*}(\mathrm{R}, \mathrm{t}) \geq \rho_{\mathrm{ITB}}^{*} \Leftrightarrow \mathrm{ITB} \text { at }(\mathrm{R}, \mathrm{t})
$$

- 116 deuterium pulses
- $1.8 \mathrm{~T} \leq \mathrm{B}_{\phi} \leq 4 \mathrm{~T}$
- 1.6 MA $\leq \mathrm{I}_{\mathrm{p}} \leq 3.6 \mathrm{MA}$
- $3.3 \leq q_{95} \leq 4.3$
- $2 \times 10^{19} \mathrm{~m}^{-3} \leq \mathrm{n}_{\mathrm{e} 0} \leq 5.5 \times 10^{19} \mathrm{~m}^{-3}$
- 4.8 MW $\leq \mathrm{P}_{\mathrm{NBI}} \leq 18.7 \mathrm{MW}$
- $0 \mathrm{MW} \leq \mathrm{P}_{\text {ICRH }} \leq 8.7 \mathrm{MW}$
G. Tresset et al, Nuclear Fusion 42 (2002) 520

Approximate Model and Singular Value Decomposition

$\boldsymbol{\mathcal { W }}=$ Linear response function ($\boldsymbol{V}=$ [current, pressure] ; $\boldsymbol{p}=$ heating/CD power)

$$
\boldsymbol{\mathcal { Z }}(\mathrm{x}, \mathrm{t})=\int_{0}^{\mathrm{t}} \mathrm{dt}^{\prime} \int_{0}^{1} \mathrm{dx}^{\prime} \boldsymbol{\mathcal { W }}\left(\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{t}-\mathrm{t}^{\prime}\right) \boldsymbol{\not}\left(\mathrm{x}^{\prime}, \mathrm{t}^{\prime}\right)
$$

Laplace transform :

$$
\boldsymbol{Z}(\mathrm{x}, \mathrm{~s})=\int_{0}^{1} \mathrm{dx}^{\prime} \boldsymbol{\mathcal { K }}\left(\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{s}\right) \boldsymbol{\not} \boldsymbol{\mathcal { P }}\left(\mathrm{x}^{\prime}, \mathrm{s}\right)
$$

Kernel singular value expansion in terms of orthonormal right and left singular functions + System reduction through Truncated SVD (best least square approximation) :

$$
\mathcal{X}\left(\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{s}\right)=\sum_{\mathrm{i}=1}^{\infty} \boldsymbol{W}_{\mathrm{i}}(\mathrm{x}, \mathrm{~s}) \sigma_{\mathrm{i}}(\mathrm{~s}) \overline{\boldsymbol{\mathcal { V }}}_{\mathrm{i}}\left(\mathrm{x}^{\prime}, \mathrm{s}\right)
$$

Set of output trial function basis

Output profiles :
and
Output singular functions :
With 2 profiles (current, pressure) : $\quad \boldsymbol{\mathcal { O }}_{\mathrm{j}}(\mathrm{x})=\left[\begin{array}{cc}\mathrm{a}_{\mathrm{j}}(\mathrm{x}) & 0 \\ 0 & \mathrm{~b}_{\mathrm{j}}(\mathrm{x})\end{array}\right]$

Identification of the operator \mathcal{X}

Galerkin's method : residuals spatially orthogonal to each basis function
$\boldsymbol{\mathcal { V }}(\mathrm{x}, \mathrm{s})=\int_{0}^{1} \mathrm{dx} \boldsymbol{\mathcal { X }}\left(\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{s}\right) \boldsymbol{\nexists}\left(\mathrm{x}^{\prime}, \mathrm{s}\right)$

$$
\int \text { residual. } \boldsymbol{\mathcal { D }}_{\mathbf{1}}(\mathrm{x}) \mathrm{dx}=0
$$

Real time reconstruction of the safety factor profile (1)

The q-profile reconstruction uses the real-time data from the magnetic measurements and from the interfero-polarimetry, and a parameterization of the magnetic flux surface geometry

Trial function basis for $q(x)$ or $\mathbf{l}(x)=1 / q(x)$

If the real-time equilibrium reconstruction uses a particular set of trial functions, then one should take the same set for the controller design.
Otherwise, the family of basis functions must be chosen as to reproduce as closely as possible the family of profiles assumed in the "measurements".

EXAMPLE (with the parameterization used in JET and $\mathrm{c}_{0} \approx 0$) :

6-parameter family
approximated by

$$
\delta q(x) \operatorname{or} t(x) \approx \sum_{1}^{N} Q_{i} \cdot b_{i}(x) \quad \text { with : }
$$

1. A set of $N=6$ basis functions $b_{i}(x)$ can be obtained through differentiation of the rational fraction with respect to the coefficients
2. Alternatively, one can choose $N \leq 6$ cubic splines for $b_{i}(x)$

What does the controller minimize ?

Output profiles :

$$
\boldsymbol{Y}(\mathrm{x}, \mathrm{~s})=\sum_{\mathrm{j}=1}^{\mathrm{N}} \boldsymbol{\mathcal { D }}_{\mathrm{j}}(\mathrm{x}) \cdot \mathbf{Q}_{\mathrm{j}}(\mathrm{~s})+\text { residual }
$$

Setpoint profiles : $\quad \boldsymbol{V}_{\text {setpoint }}(\mathrm{x})=\sum_{\mathrm{j}=1}^{\boldsymbol{\mathcal { N }}} \boldsymbol{\mathcal { O }}_{\mathrm{j}}(\mathrm{x}) \cdot \mathbf{Q}_{\mathrm{j}, \text { setpoint }}+$ residual

$$
\mathrm{GOAL}=\operatorname{minimize}\left[\boldsymbol{\Sigma}(\mathrm{s}=0)-\boldsymbol{\nu}_{\text {setpoint }}\right] \bullet\left[\boldsymbol{\Sigma}(\mathrm{s}=0)-\boldsymbol{\Sigma}_{\text {setpoint }}\right]
$$

Define scalar product to minimize a least square quadratic form :

$$
\int_{0}^{1} \mu_{1}(\mathrm{x})\left[\mathrm{q}(\mathrm{x})-\mathrm{q}_{\text {setpoint }}(\mathrm{x})\right]^{2} \mathrm{dx}+\int_{0}^{1} \mu_{2}(\mathrm{x})\left[\rho_{\hat{\mathrm{T}}}^{*}(\mathrm{x})-\rho_{\mathrm{T}, \text { setpoint }}^{*}(\mathrm{x})\right]^{2} \mathrm{dx}
$$

Identification of the first singular values and singular functions of \mathcal{X} for the TSVD

$\boldsymbol{\mathcal { V }}(\mathrm{x}, \mathrm{s})=\int_{0}^{1} \mathrm{dx}^{\prime} \boldsymbol{\mathcal { X }}\left(\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{s}\right) \boldsymbol{\not}\left(\mathrm{x}^{\prime}, \mathrm{s}\right)$

$$
\int_{0}^{1} \text { residual. } \boldsymbol{O}_{1}(\mathrm{x}) \mathrm{dx}=0
$$

The best approximation for $\sigma_{\mathrm{k}}, \boldsymbol{\mathcal { W }}_{\mathrm{k}}$ and $\boldsymbol{\mathcal { V }}_{\mathrm{k}}$ in the Galerkin sense in the chosen trial function basis $b_{i}(x)$ is then obtained by performing the SVD of a matrix $\hat{\mathbf{K}}(\mathbf{s})$ related by $\mathbf{K}_{\text {Galeerkin }}$ through :
$\mathrm{B}_{\mathrm{i}, \mathrm{j}}=\int_{0}^{1} \mathbf{b}_{\mathrm{i}}(\mathrm{x}) \cdot \mathbf{b}_{\mathrm{j}}(\mathrm{x}) \mathrm{dx} \quad \Longrightarrow \quad \mathbf{B}=\Delta^{+} . \Delta$ (Cholesky decomposition)
$\hat{\mathbf{K}}(\mathbf{s})=\boldsymbol{\Delta} \cdot \mathbf{K}_{\text {Galerkin }}(\mathbf{s}) \Longrightarrow \hat{\mathbf{K}}(\mathbf{s})=\hat{\mathbf{W}}(\mathbf{s}) \cdot \boldsymbol{\Sigma}(\mathbf{s}) \cdot \mathbf{V}^{+}(\mathbf{s}) \Longrightarrow \mathbf{W}(\mathbf{s})=\boldsymbol{\Delta}^{-1} \cdot \hat{\mathbf{W}}(\mathbf{s})$

Pseudo-modal control scheme

SVD provides decoupled open loop relation between modal inputs $\alpha(s)=V+\mathbf{P}$ and modal outputs $\beta(\mathrm{s})=\mathbf{W}+\mathbf{B Q}$
Truncated diagonal system (≈ 2 or 3 modes) : $\boldsymbol{\beta}(\mathrm{S})=\boldsymbol{\Sigma}(\mathrm{s}) \cdot \boldsymbol{\alpha}(\mathrm{s})$

STEADY STATE DECOUPLING

Use steady state SVD ($\mathrm{s}=0$) to design a Proportional-Integral controller

$$
\alpha(s)=G(s) \cdot \delta \beta(s)=g_{c}\left[1+1 /\left(\tau_{i} \cdot s\right)\right] \cdot \Sigma_{0}^{-1} \cdot \delta \beta(s)
$$

Closed-loop transfer function (PI control)

To minimize the difference between the steady state profiles and the reference ones in the least square sense:
$\operatorname{Min} \int\left[\mathrm{q}(\mathrm{x}, \mathrm{s}=0)-\mathrm{q}_{\mathrm{ref}}(\mathrm{x})\right]^{2} \mathrm{dx} \Rightarrow \operatorname{Min}\left\{\left(\mathrm{Q}^{+}-\mathrm{Q}_{\mathrm{ref}}^{+}\right) \boldsymbol{\Delta}^{+} \boldsymbol{\Delta}\left(\mathrm{Q}-\mathrm{Q}_{\mathrm{ref}}\right)\right\}$

$$
\mathbf{Q}=\mathbf{K}_{\text {Galerkin }} \cdot \mathbf{P} \Rightarrow \text { Solution : } \mathbf{P}_{\text {optimal }}=\left[\mathbf{V}_{0} \Sigma_{0}^{-1} \mathbf{W}_{0}+\mathbf{B}\right] \cdot \mathbf{Q}_{\text {ref }}
$$

Proposed proportional-integral controller :

$$
P(s)=g_{c}\left[1+1 /\left(\tau_{i} \cdot s\right)\right] \cdot\left[V_{0} \Sigma_{0}^{-1} W_{0}+B\right] \cdot \delta Q=G_{c} \cdot \delta Q
$$

- Closed loop transfer function ensures steady state convergence to the least square integral difference with no offset, i. e.

$$
\mathrm{P}(\mathrm{~s}=0)=\mathrm{P}_{\text {optimal }}
$$

- Choose g_{c} and τ_{i} to ensure closed-loop stability [i.e. Im (poles s_{k}) <0]

Initial experiments with the lumped-parameter version of the algorithm with 1 actuator q-profile control with LHCD power

The accessible targets are restricted to a one-parameter family of profiles

With 5 q-setpoints : no problem if the q-profile tends to "rotate" when varying the power.

With only the internal inductance some features of the q-profile shape could be missed (e.g. reverse or weak shear in the plasma core).

Applying an SVD technique with 5 q-setpoints may not allow to reach any one of the setpoints exactly, but could minimize the error on the profile shape.

\because :

5-point q-profile control with LHCD power steady state
 JG03.07-4

D. Mazon et al, PPCF 45 (2003) L47

CRONOS integrated modelling code

- Integrated suite of codes, fully modular.
- Solves transport equations (energy, current, density, ...), self-consistently with :
- Plasma equilibrium (2D equilibrium solver HELENA)
- Computation of the H/CD/particle sources (ICRH : PION, LHCD : DELPHINE, NBI : SINBAD, ECRH : REMA)
- Coupled to JET, Tore Supra, FTU databases, and ITPA Profile DBs
- Several transport models available : Bohm/gyro-Bohm, Weiland, GLF23, ...
- Post-processing : MHD stability (Mishka), diagnostic reconstruction (MSE, polarimetry, ...)
- Feedback control available
J.F. Artaud, V. Basiuk, F. Imbeaux, X. Litaudon

JETTO simulations with the distributed-parameter version of the algorithm with 3 actuators TSVD for 5-point q-profile control

The Predicted q-profile Evolution with RTC

Target q-profiles

—— no RTC (ref.)
—— flat
—— weakly reversed
_— reversed

T. Tala monotonic

Conclusions and perspectives (1)

1. A fairly successful control of the safety factor profile was obtained with the lumped-parameter version of the proposed TSVD algorithm.
2. Preliminary results have just been obtained with the distributedparameter version including $\left[q(r)+\rho_{T}{ }^{*}(r)\right]$.

These results provide an interesting basis and call for a larger integrated modeling and experimental programme on JET, aiming at the sustainement and control of ITB's in fully non-inductive plasmas and with a large fraction of bootstrap current.

Conclusions and perspectives (2)

The potential extrapolability of the proposed DPS/TSVD technique to strongly coupled distributed-parameter systems with a larger number of actuators and input/output parameters and with more flexibility in the deposition profiles, is an attractive feature for an INTEGRATED BURNING PLASMA CONTROL FOR STEADY STATE ADVANCED REACTOR OPERATION, including

- control of the plasma shape,
- of the safety factor profile (including plasma current, $\mathbf{q}_{\text {edge }}$)
- of the temperature and density profiles,
- but also of the fusion and radiated powers,
- and of the primary flux consumption/recharging.

