ICRF Heating Simulation in 3D Magnetic Configuration

S. Murakami, M. Osakabe ${ }^{1)}$, T. Seki ${ }^{11}$, M. Sasao ${ }^{2}$, M. Isobe ${ }^{1)}$, T. Ozaki ${ }^{1)}$, P. Goncharov ${ }^{1)}$, T. Saida ${ }^{2}$, J. F. Lyon ${ }^{3}$, T. Mutoh ${ }^{1)}$, R. Kumazawa ${ }^{1)}$, K. Saito ${ }^{1)}$, Y. Torii ${ }^{4}$, T. Watari ${ }^{1)}$, Y. Takeiri ${ }^{1)}$, Y. Oka ${ }^{1)}$, K. Tumori ${ }^{1)}$, K. (keda ${ }^{1)}$, H. Yamada ${ }^{1)}$, S.V. Kasilov ${ }^{5}$, A. Fukuyama, and LHD Experimental Group

Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan
${ }^{1)}$ National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
${ }^{2)}$ Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
${ }^{3)}$ Oak Ridge National Laboratory, Oak Ridge, TN 37831-8072, USA
${ }^{4)}$ Department of Energy Engineering and Science, Nagoya University, 464-8603, Japan
${ }^{5)}$ Institute of Plasma Physics, National Science Center, KIPT, Kharkov, UKRAINE

Magnetic Configuration of LHD

magnetic filed line

GNET: Simulation Model (I)

- We solve the drift kenetic equation as a (time-dependent) initial value problem based on the Monte Carlo technique.

$$
\frac{\partial f}{\partial t}+\left(\mathbf{v}_{/ /}+\mathbf{v}_{D}\right) \cdot \nabla f+\dot{\mathbf{v}} \cdot \nabla_{\mathbf{v}} f-C^{\text {coll }}(f, f)-L^{\text {orbit }}(f)=S(f)
$$

- Writing the gyrophase averaged distribution function as

$$
f\left(x, v_{/ l}, v_{\perp}, t\right)=f_{b g}\left(r, v^{2}\right)+\delta f\left(x, v_{/ /}, v_{\perp}, t\right)
$$

the linearized drift kinetic equation can be given with initial condition $\delta \mathbf{f}(\mathbf{x}, \mathbf{v}, \mathbf{t}=\mathbf{0})=\mathbf{0}$
steady state solution $(t=\infty)$

$$
\begin{aligned}
& \frac{\partial \delta f}{\partial t}+\left(\mathbf{v}_{/ /}+\mathbf{v}_{D}\right) \cdot \nabla \delta f+\dot{\mathbf{v}} \cdot \nabla_{\mathbf{v}} \delta f-C^{\text {coll }}\left(\delta f, f_{b g}\right)-S(\delta f)-L^{\text {orbit }}(\delta f) \\
& =S\left(f_{b g}\right)+S^{n e o}\left(f_{b g}\right)+C^{\text {coll }}\left(f_{b g}, \delta f\right)
\end{aligned}
$$

- $C^{\text {coll }}, L^{\text {orbit }}$ and S are the linear collision operator, orbit loss and the energy and particle source, respectively. $S^{n e o}$ is the usual driving term for neoclassical transport.

$$
S^{n e o}=-\left(V_{D}\right)_{r} \frac{\partial f_{b g}}{\partial r}-\dot{v} \frac{\partial f_{b g}}{\partial v}
$$

GNET: Simulation Model (II)

- It is convenient to introduce the Green function $\mathcal{G}\left(x, v, t \mid x^{\prime}, v^{\prime}\right)$ which is defined by the homogeneous F-P equation

$$
\frac{\partial \boldsymbol{\mathcal { G }}}{\partial t}+\left(\mathbf{v}_{/ /}+\mathbf{v}_{D}\right) \cdot \nabla \boldsymbol{\mathcal { G }}+\dot{\mathbf{v}} \cdot \nabla_{\mathbf{v}} \boldsymbol{\mathcal { G }}-C(\boldsymbol{\mathcal { G }})-S(\boldsymbol{\mathcal { G }})-L(\boldsymbol{\mathcal { G }})=0
$$

with the initial condition $\mathcal{C}\left(\mathbf{x}, \mathbf{v}, t=0 \mid \mathbf{x}^{\prime}, \mathbf{v}^{\prime}\right)=\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \delta\left(\mathbf{v}-\mathbf{v}^{\prime}\right)$

- Then, the solution of the inhomogeneous problem is given by the convolution with \mathcal{G};

$$
\delta f(\mathbf{x}, \mathbf{v}, t)=\int_{0}^{t} d t^{\prime} \int d \mathbf{x}^{\prime} \int d \mathbf{v}^{\prime} S\left(f_{b g}\right) \mathcal{G}\left(\mathbf{x}, \mathbf{v}, t-t^{\prime} \mid \mathbf{x}^{\prime}, \mathbf{v}^{\prime}\right)
$$

- In this approach, only the Green function \boldsymbol{G} has to be determined by the Monte Carlo technique.

Monte Carlo Simulation for \mathcal{G}

- Magnetic configuration

Finite $\boldsymbol{\beta}$ effects (magnetic configuration change due to Shafranov shift) 3D MHD equilibrium (VMEC+NEWBOZ)

- Complicated particle motion guiding center motion (μ is conserved.)
Hamiltonian of charged particle

$$
H=\frac{q^{2}}{2 m} \rho_{c}^{2}+\mu B(\psi, \vartheta, \phi)+q \Phi(\psi)
$$

eq. of motıon in the ьoozer coorainates ($\left.\psi, \theta, \phi, \rho_{c}\right)$

- Coulomb collisions

Liner Monte Carlo collision operator [Boozer and Kuo-Petravic] energy and pitch angle scattering

$$
C^{\text {coll }}(\delta f)=\frac{1}{v^{2}} \frac{\partial}{\partial v}\left[v^{2} v_{E}\left(v \delta f+\frac{T}{m} \frac{\partial \delta f}{\partial v}\right)\right]+\frac{v_{d}}{2} \frac{\partial}{\partial \lambda}\left(1-\lambda^{2}\right) \frac{\partial \delta f}{\partial \lambda}, \quad \lambda=\frac{v_{/ I}}{v}
$$

Global Transport Simulation by GNET

- We have developed a GNET(Global NEoclassical Transport) code solving drift kinetic equation in 5D phase-space.
- We study the energetic particle transport in non-axisymmetric configurations by GNET code.
- ECRH generated suprathermal electron transport

W7-AS, CHS, LHD
(collaboration with Max-Planck IPP)

- NBI generated beam ion transport

LHD, CHS

- ICH generated energetic tail ion transport LHD, W7-X

ICH Simulation Model by GNET

- We solve the drift kinetic equation as a (time-dependent) initial value problem in 5D phase space based on the Monte Carlo technique.

$$
\frac{\partial f_{\min }}{\partial t}+\left(\mathbf{v}_{/ /}+\mathbf{v}_{D}\right) \cdot \nabla f_{\min }+\mathbf{a} \cdot \nabla_{\mathbf{v}} f_{\min }-\underline{C\left(f_{\min }\right)-Q_{k c r f}\left(f_{\min }\right)-L_{\text {parite }}=S_{\text {pmaisel }}}
$$

$C(f)$: linear Clulomb Collision Operator
$Q_{\text {ICRF }}:$ ICRF heating term wave-particle interaction model
$S_{\text {particle }}$: particle source
=> by ionization of neutral particle (AURORA code)
$L_{\text {particle }}:$ particle sink (loss)
=> Charge exchange loss => Orbit loss (outermost flux surface)

- The minority ion distribution f is evaluated through a convolution of $S_{\text {particle }}$ with a characteristis time dependent Green function.

Wave-Particle Interaction ($\mathrm{Q}_{\text {ICRF }}$)

Change velocity due to RF wave when a particle passes through the resonance layer.

$$
\begin{aligned}
\Delta \mathrm{v}_{\perp} & =\frac{q}{2 m} I\left|E_{+}\right| J_{n-1}\left(k_{\perp} \rho\right) \cos \phi_{r}+\frac{q^{2}}{8 m^{2} \mathrm{v}_{\perp 0}}\left\{I\left|E_{+}\right| J_{n-1}\left(k_{\perp} \rho\right)\right\}^{2} \sin ^{2} \phi_{r} \\
I & =\sqrt{2 \pi / n \dot{\omega}} \text { or } 2 \pi(n \ddot{\omega} / 2)^{-1 / 3} \mathrm{Ai}(0) \quad \phi_{r} \text { : phase (random number) }
\end{aligned}
$$

For the averages over the random phase we obtain up to the leading order terms

$$
\begin{aligned}
& \left\langle\Delta \mathrm{v}_{\perp}\right\rangle \approx \frac{q^{2}}{16 m^{2} \mathrm{v}_{\perp 0}}\left\{I\left|E_{+}\right| J_{n-1}\left(k_{\perp} \rho\right)\right\}^{2} \quad\left\langle\Delta \mathrm{v}_{\perp}^{2}\right\rangle \approx \frac{q^{2}}{8 m^{2}}\left\{I\left|E_{+}\right| J_{n-1}\left(k_{\perp} \rho\right)\right\}^{2} \\
& \left\langle\Delta \mathrm{v}_{\perp}\right\rangle=\frac{1}{\mathrm{v}_{\perp 0}} \frac{\partial}{\partial \mathrm{v}_{\perp 0}}\left(\mathrm{v}_{\perp 0} \frac{\left\langle\mathrm{v}_{\perp 0}^{2}\right\rangle}{2}\right)
\end{aligned}
$$

This relation means absence of convection in velocity space during the resonance wave-particle interaction.

Effect of Resonance Position on RF Heating

- ICRF heating experiment has been performed also changing RF resonance position relative to magnetic flux surface in LHD.
- We found that the difference in the heating efficiencies and the decrease of energetic particle counts of NDD-NFA.

R. Kumazawa, et al., Phys. Plasmas 8 (2001) 2139.

Energetic Particle Measurements

NDD-FNA

Energetic Ion Distribution by ICH

Contour plot of minority ion $\left\langle f\left(\mathrm{v}_{/ /}, \mathrm{v}_{\text {perp }}, \mathrm{r}\right)\right\rangle$

Energetic Ion Pressure Profile in 3D

$R_{a x}=3.6 m$

$\mathrm{T}_{\mathrm{e} 0}=\mathrm{T}_{\mathrm{i} 0}=1.6 \mathrm{keV}, \mathrm{n}_{\mathrm{e} 0}=1.0 \times 10^{19} \mathrm{~m}^{-3} \mathrm{~B}=2.75 \mathrm{~T} @ \mathrm{R}=3.6 \mathrm{~m}$,
$\mathrm{f}_{\mathrm{RF}}=38.47 \mathrm{MHz}, \mathrm{k}_{/ /}=5 \mathrm{~m}^{-1}, \mathrm{k}_{\mathrm{perp}}=62.8 \mathrm{~m}^{-1}, \mathrm{P}_{\mathrm{ICH}} \sim 2.5 \mathrm{MW}$

Energetic Ion Distribution by ICH ($\mathrm{B}_{\text {res }}$)

off axis

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{eo}}=\mathrm{T}_{\mathrm{io}}=1.6 \mathrm{keV}, \mathrm{n}_{\mathrm{e} 0}=1.0 \times 10^{19} \mathrm{~m}^{-3} \mathrm{~B}=2.75 \mathrm{~T} @ \mathrm{R}=3.6 \mathrm{~m}, \\
& \mathrm{f}_{\mathrm{RF}}=38.47 \mathrm{MHz}, \mathrm{k}_{/ /}=5 \mathrm{~m}^{-1}, \mathrm{k}_{\mathrm{perp}}=62.8 \mathrm{~m}^{-1}, \mathrm{E}_{\mathrm{rf}}=0.7 \mathrm{kV} / \mathrm{m} \\
& \hline
\end{aligned}
$$

Energetic Ion Pressure Profile in 3D ($\mathbf{B}_{\text {res }}$)

$$
p_{\text {minority }}=2 \pi \int \frac{1}{2} m v^{2} f\left(v_{/ /}, v_{\perp}\right) \mathrm{d} v_{/ / 1} v_{\perp} \mathrm{d} v_{\perp} \quad \begin{aligned}
& \mathrm{T}_{\mathrm{ec}}=\mathrm{T}_{\mathrm{io}}=1.6 \mathrm{keV}, \mathrm{n}_{\mathrm{ec}}=1.0 \times 10^{19} \mathrm{~m}^{-3} \mathrm{~B}=\mathbf{2 . 7 5 T} @ \mathbf{R}=3.6 \mathrm{~m}, \\
& \mathrm{f}_{\mathrm{RF}}=38.47 \mathrm{MHz}, \mathrm{k}_{/ /}=5 \mathrm{~m}^{-1}, \mathrm{k}_{\text {perp }}=62.8 \mathrm{~m}^{-1}, \mathrm{E}_{\mathrm{rff}}=0.7 \mathrm{kV} / \mathrm{m}
\end{aligned}
$$

Power Absorption and Heat Deposition ($\mathrm{B}_{\text {res }}$)

Heating efficiency $=P_{\text {dep }} / P_{a b s}$
off axis: $0.52(+01 . \sim 02 ?) \quad P_{\text {abs }}=1.4 \mathrm{MW}$
on axis : $0.58(+01 . \sim 02 ?) \quad \mathbf{P}_{\text {abs }}=0.94 \mathrm{MW}$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{eo}}=\mathrm{T}_{\mathrm{io}}=1.6 \mathrm{keV}, \mathrm{n}_{\mathrm{e} 0}=1.0 \times 10^{19} \mathrm{~m}^{-3} \\
& \mathrm{~B}=2.75 \mathrm{~T} @ \mathrm{R}=3.6 \mathrm{~m}, \mathrm{f}_{\mathrm{RF}}=38.47 \mathrm{MHz} \\
& \mathrm{k}_{/ /}=5 \mathrm{~m}^{-1}, \mathrm{k}_{\mathrm{perp}}=62.8 \mathrm{~m}^{-1}, \mathrm{E}_{\mathrm{rf}}=0.7 \mathrm{kV} / \mathrm{m}
\end{aligned}
$$

Comparisons with Experimental Measurements

- NDD count number was simulated using the GNET results.
- We obtain similar tendencies with the experimental results in qualitative sense.

Conclusions

- We have developed a 5D (3D+2D) phase space simulation code, GNET, for studying the global collisional transport in nonaxisymmetric configurations.
- The GNET code has been applied to the analysis of energetic tail ion transport during ICRF heating in LHD.
- A steady state distribution of energetic tail ion has been obtained and the characteristics of the distribution in the phase space are clarified. (on/off axis dependencies)
- Future Plan
- Inclusion of RF wave field by the full wave code: TASK/WM is now under investigation.
[A. Fukuyama, E. Yokota and T. Akutsu, Proc. 18th IAEA Conf on Fusion Energy (Sorrento, Italy, 2000) THP2-26, published on CD-ROM (May, 2001)]
- Collaboration with GA group
- Benchmark with ORBIT-RF
- Momentum and energy conserving collision operator

