

Joint Meeting of "US-Japan JIFT Workshop on Theory-Based Modeling and Integrated Simulation of Burning Plasmas" and "21COE Workshop on Plasma Theory", 15-17 December, 2003, Kyoto

Edge Plasma Modeling Using PARASOL Code

T. Takizuka

JAERI, Naka Fusion Research Establishment

Contents

1. Introduction

Why is the particle simulation required?

2. Simulation Model

PARASOL code PIC method, Binary collision model etc.

3. Simulation Results

1D and 2D simulations of the Divertor Asymmetry Boundary conditions for Flow Velocity

2D simulations of the Flow Control

4. Summary

Power and Particle Control by SOL/Divertor Plasmas

Since the SOL/divertor plasmas attach walls directly, plasma particles and heat escape to the walls mainly along magnetic field lines.

Utilizing this nature, we expect divertor functions for the **heat removal**, **ash exhaust**, and **impurity shielding** in fusion reactors, such as ITER.

Simulations for Divertor Study

Experimental analyses and prediction studies for divertor functions have been performed by using comprehensive simulation codes with the **fluid model**. In the fluid model for open-field plasmas, various **physics models** are introduced, i.e., boundary conditions at the plasma-wall boundary, heat conductivity etc.

$$V_{//} = C_s$$
 (Bohm condition)

 $q_{cond} = -\kappa_{//} \nabla_{//} T$

Kinetic approach is required to examine the validity of such physics models.

PARASOL Code

One of the most powerful kinetic models is the **particle simulation**.

An advanced particle simulation code **PARASOL**

PARticle Advanced simulation for SOL and divertor plasmas

was developed.

PIC method Binary collision model

Neutral particles Source, Sink, Heating, Cooling etc.

Motion of Charged Particles

Collisionless motion of ion

 $m_i dv/dt = e (E + v \times B)$, dr/dt = v

Motion of a guiding center of electron

$$m_e dv_{//} dt = -e \mathbf{E} \cdot \mathbf{B} / B - \mu \nabla_{//} B + m_e v_{//} v_{E \times B} \cdot \nabla B / B$$
$$d\mathbf{r} / dt = v_{//} \mathbf{B} / B + v_{E \times B} + v_{\nabla B}$$

Monte-Carlo cross-field diffusion

$$<\Delta r_{anom}^2 > = 2 D_{anom} \Delta t$$

Poisson's equation

- $\nabla^2 \phi = (e/\epsilon_0) (n_i - n_e)$, - $\nabla \phi = \mathbf{E}_s$

PIC method $\Delta x \sim \lambda_D$, Leap-Frog method $\Delta t \sim \omega_p^{-1}$

Coulomb Collisions - Binary collision model -

(1) In a time interval, a particle in a cell suffers binary collisions with an ion and an electron which are chosen randomely in the same cell.

ion-electron

(2) Change in the relative velocity results from a coulomb interaction.

Total momentum and total energy are conserved intrinsically.

Random selection of collision pairsAt first;random rearrangement of
addresses in every cell
at every time step.Next ;Image: Collision pairs

like-particles

Landau collision integral

T. Takizuka, H. Abe, J. Comput. Phys. **25**, 205 (1977).

Various versions of PARASOL

1D Stationary code

Sheath formation Parallel transport

1D Dynamic code

Response to ELM

Heat flux at divertor plate

 $\leftarrow L/C_s \rightarrow time$

2D Slab code

Divertor asymmetry, Drift effect

2D Separatrix code

Flow control

Asymmetry between inner and outer divertor plasmas

Recycling asymmetry due to configurations and

Effect of Dr讨论 的ow (reversal of asymmetry with B_t direction)

Physical mechanism of asymmetry has been investigated by using PARASOL code

1D PARASOL Simulation - Asymmetry due to E×B drift-

2D PARASOL Simulation

Which drift is essential for the asymmetry ?

Artificial elimination of ExB drift to find what is essential

Asymmetry is mitigated by eliminating V_{E×B,y}

T. Takizuka, M. Hosokawa, K. Shimizu, J. Nucl. Mater. **313-316**, 1331 (2003).

Magnetic presheath formation

Assumption $\partial Q_0 / \partial x = 0$, $\partial \delta \Phi / \partial y = 0$ **Charge neutrality & Electron responce** $\delta n_e = \delta n_i \equiv \delta n$, $\delta n/n_0 = e \,\delta \phi / T_{e0//} \equiv \delta \Phi$ lon responce $\delta P_i / P_{i0} = \gamma \delta n / n_0 = \gamma \delta \Phi$ Pressure $\mathbf{V} = (\mathbf{B}/\mathbf{B}) \mathbf{V}_{//} + \mathbf{V}_{\mathbf{E}\times\mathbf{B}} + \mathbf{V}_{\mathbf{dia}} + \mathbf{V}_{\mathbf{pol}}$ Flow **Polarization drift** $\delta V_{\text{pol},x} = -V_{x0} \rho_{\text{eff}}^2 \partial^2 \delta \Phi / \partial x^2 \quad [\rho_{\text{eff}}^2 \equiv T_{\text{eff}} / eB\Omega]$ **Parallel-momentum equation** $MV_{x0} \partial \delta V_{//} \partial x = -(\Theta T_{eff/} + (V_{//0}'/\Omega) T_{eff/}) \partial \delta \Phi / \partial x$ Ion continuity equation $\partial nV_x/\partial x + \partial nV_v/\partial y = 0$ **ExB drift by** $(\partial \delta \Phi / \partial x)$ **is important** $(\partial n_0 / \partial y) dV_{E \times B, y} = (\partial n_0 / \partial y) (T_{eff//} / eB) \partial \delta \Phi / \partial x$ $\mathsf{M} \mathsf{V}_{\mathsf{x}0}^2 \rho_{\mathsf{eff}}^2 \frac{\partial^2 \delta \Phi}{\partial \mathsf{x}^2} = \{\mathsf{M} \mathsf{V}_{\mathsf{x}0} \mathsf{V}_{\mathsf{x}^*} - \Theta^2 (\mathsf{T}_{\mathsf{eff}//} + (\mathsf{V}_{//0}^{-1}/\Theta\Omega) \mathsf{T}_{\mathsf{eff}\perp})\} \delta \Phi$ ≥ 0 Polarization drift term **Condition of sheath formation** (exponential growing)

Self-organized 2D structure of SOL/divertor plasma

2D Particle Simulation of the Flow Control in SOL and Divertor Plasmas

T. Takizuka, M. Hosokawa, K. Shimizu, J. Nucl. Mater. **313-316**, 1331 (2003).

Summary

 An advanced particle simulation code PARASOL has been developed, to validate various physics models introduced to fluid simulations of SOL/divertor plasmas.

A binary collision model is incorporated to an electrostatic PIC method.

- Condition for the 2D sheath formation is derived analytically, and confirmed by 2D PARASOL simulation.
- Boundary condition is a key factor for the self-organization of 2D structure of SOL/divertor plasmas.
 Divertor asymmetry is the intrinsic feature.
- Control of the asymmetry by the divertor biasing is demonstrated with 2D PARASOL simulation.