Updates and Status of HCD Physics Assessments, Actuator Design and Code Developments

T. Oikawa (ITER Organization)

with contributions from K. Kajiwara², K. Takahashi², K. Tani¹, K. Shinohara², T. Sugie², Y. Kusama², ¹Nihon Advanced Technology, ²JAEA

EC Equatorial Launcher (EL) (1)

- BSM opening narrowed to avoid neutron to directly strike waveguides.
- Single mirror -> focus mirror + steering mirror
- Steering mirror moved back by ~10cm to arrange cooling pipes
- Ctr. injection by the mid steering mirror
- Beam waist ~ 1 m at the 2010 design unacceptable for physics objectives.

EC Equatorial Launcher (EL) (2)

- JAEA provides a new design obtained by engineering optimization but with an attention to a physics requirement (narrow beam waist).
- For each of top, mid and bottom steering mirrors, 1/e beam width of 8 beams at vacuum resonant location ~ 0.2 m.
- Toroidal steering angle : 20 42 degree
- Poloidal angles fixed at -5, 0 and 5 degrees for top, mid and bottom rows.

EC Equatorial Launcher (EL) (4)

- At present, parameters given only for toroidal angles of 20 and 40 degrees.
- Linear interpolation/extrapolation will give a proper approximation for 20-42 degrees.
- Physics and engineering optimization is still in progress, which may lead to changes in fixed poloidal angles and the toroidal steering range.
- A revised summary document will be distributed to ITPA IOS soon.

Lower unit	x0	[mm] y0 [mn	n] z	0 [mm] I	n	n n		wx0 [mm]	dx0 [mm]	wz0 [mm]	dz0 [mm]	theta [degree]
40 deg	1	1119.610433	8980	53.13302736	-0.604113718	-0.794962906	0.055503101	17.85953468	8 -1527.110953	3 16.53389297	-1369.572924	-9.09
	2	1140.125893	8980	54.73908313	-0.639093401	-0.767106364	0.055744507	16.69414513	3 -1371.350349	9 16.83457171	-1332.553397	42.62
	3	1190.842457	8980	55.57435217	-0.669260119	-0.740916076	0.055984477	16.15861412	-1269.604455	5 16.80787565	-1239.683828	11.25
	4	1127.351405	8980	21.78839492	-0.620501091	-0.778391366	0.095316719	17.6597813	-1487.853342	2 16.4591104	-1313.2038	-7.13
	5	1161.803223	8980	19.83172724	-0.652699679	-0.751433854	0.096593437	16.4062849	-1314.763412	16.52399217	-1242.472654	8.00
	6	1115.008038	8980	-17.41449528	-0.59917352	-0.789628217	0.132205794	18.3915646	-1568.500263	3 16.46186629	-1347.818306	-0.76
	7	1136.100204	8980	-20.56916531	-0.633908646	-0.761563274	0.134837714	17.00884944	-1403.874925	5 16.5903498	-1295.306379	-18.79
	8	1186.610669	8980	-27.52426427	-0.663744773	-0.73531209	0.136963522	16.19786325	5 -1269.288482	16.71433521	-1231.092013	-2.97
20 deg	1	1299.239307	8980	42.4324563	-0.296638095	-0.954136564	0.040364071	19.8166752	2 -1669.54079	20.0058936	-1656.429436	49.28
	2	1320.725298	8980	43.94530122	-0.339118132	-0.939821212	0.041653112	20.0785088	3 -1673.956861	20.2380714	-1608.86811	18.62
	3	1365.408454	8980	44.90057135	-0.376522816	-0.925416383	0.042837908	23.1443686	6 -1871.138648	3 20.80884794	-1606.203946	-9.37
	4	1307.157753	8980	7.224751785	-0.316996057	-0.944976586	0.080825441	20.0948426	7 -1681.856989	9 19.92539045	-1606.143199	16.99
	5	1339.316029	8980	5.636476443	-0.356542805	-0.930576239	0.083096878	20.3733158	-1684.376403	3 20.33956315	-1576.52687	5.68
	6	1293.432539	8980	-35.71635961	-0.29236055	-0.94908677	0.117301374	20.09114206	6 -1691.621189	9 19.98602122	-1647.458733	-3.26
	7	1315.300046	8980	-38.69150722	-0.334639647	-0.93454733	0.120985926	20.0959769	-1664.993512	2 20.55238479	-1638.671104	-3.14
	8	1359.641981	8980	-44.26353235	-0.371719192	-0.920017906	0.124064079	22.17598223	-1823.627894	4 21.64773518	-1663.910771	-7.42

ELM coils impact on NBI fast ion loss (1)

• n=4 Magnetic field by ELM mitigation coils (EMCs)

ELM coils impact on NBI fast ion loss (2)

- Loss of NBI fast ions due to EMCs in the former "Scenario 4".
- The peak heat load near the upper ELM coils is as high as $1.0-1.5 \text{ MW/m}^2$.
- If EMC field rotates, the heat load will be averaged among the 9 ELM coil sectors. The peak heat load can be mitigated to ~ 0.2-0.25MW/m².

		ELM coils	EN	MC (ELM m	Power	Fraction			
Т	TF-rinnle		n	Number of	of Coil Maximum EMC		loss	of loss	
Case	& TRM		(toroidal	coils in	current	field at	point B	fraction	banana
			mode	each	opti-	in figure 2 (%)		(%)	particles
			number)	toroidal	mizatio	B _R /Bt	B _o /Bt	(/0)	(%)
NB1	on	off						0.2	75.4
NB2	on	on	4	9	on	0.36	0.24	16.8	46.7
NB3	off	on	4	9	on	0.36	0.24	16.5	46.2
NB4	on	on	4	9	off	0.36	0.24	15.2	46.9
NB5	on	on	4	8	off	0.37	0.33	6.5	49.3
NB6	on	on	2	9	off	0.36	0.22	1.5	61.7
NB7	on	on	3	9	off	0.28	0.18	0.6	75.9
NB8	on	on	9	9	off	0.22	0.20	0.3	74.5

Coil current optimization on: The upper and lower current phases are shifted by -12.4 deg. and -3.4 deg. respect Coil current optimization off: The current phases are not shifted.

NB5 : The result for n=4 with 8 ELM coils in each toroidal row. The coil current was reduced to about f one-half of the 9-coil system so that the Fourie components of n=4 would approximately equal the level of the 9-coil system.

By K.Tani et al., submitted to NF

ELM coils impact on NBI fast ion loss (3)

- An ITER contract on assessments for H-mode scenarios starts this year (15MA inductive, hybrid, 9MA SS and He-plasma scenarios), and its result will be given in May~June, 2012.
- ITPA EP group has defined a benchmark coordinated by K.Taina (Univ. Helsinki) with contributions from Shinohara/ Tani (JAEA), Konovalov (Kurchatov), etc.

H&CD Code Developments (1)

- The new analytic OFMC scheme reported at the 5th ITPA IOS (Seoul, Korea, Oct/2010) has been updated to resolve a discrepancy near the axis with the conventional OFMC code F3D-OFMC.
- Now good agreement in the entire regime.

H&CD Code Developments (2)

• The new analytic OFMC code gives ~5% larger values for the total driven fast ion current and NBCD. Need to check if this is accountable with Monte-Carlo statistical uncertainty.

Old results		Beam current	Beam-driven current		
Conventional	w/o F.B.W effect	3.31MA	2.34MA		
OFMC	w/ F.B.W effect	3.59MA	2.54MA		
New OFMC		3.84MA	2.70MA		

New results		Beam current	Beam-driven current		
Conventional	w/o F.B.W effect	-	-		
OFMC	w/ F.B.W effect	3.43MA	2.44MA		
New OFMC		3.61MA	2.56MA		

F.B.W. : finite banana width

H&CD Code Developments (3)

• Profiles of power depositions to plasma species now in good agreement.

H&CD Code Developments (4)

• The acceleration rate against the conventional OFMC is improved from 72 to 174 (tested on Fujitsu PRIMERGY RX600S4 (117GFLOPS/Core) for the former "ITER Scenario 4" with 3,000 test particles, using 4 cores).

Old results	Wall clock time		
Conventional OFMC	14510.8 s		
	200.5 s		
	(Acceleration=72.4)		

New results	Wall clock time		
Conventional OFMC	7909.4 s		
New OFMC	45.4 s		
	(Acceleration=174.2)		

Summary

- Now injection geometry of EC-EL with ctr-injection can be provided. But be noted that this is still a temporary design. The IO/POP will try to provide revised information at proper occasions.
- The EMC field can cause a non-negligible FW heat load. Assessments of ELM coil effects on fast ion confinement are in progress or will start soon in the ITPA EP frame and an ITER task.
- Code developments :
 - Analytic OFMC solver improved both in accuracy and computational time against the conventional OFMC scheme.
 - Tests of ICRF H&CD module (TASK/WMF) in work.