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Coupled JINTRAC/CREATE-NL simulation of H-L transition in

ITER Scenario-2- can ITER PF system cope with it?

B, (top) and Inner gap (bottom) time evolution following "expected™ fast

(blue/green), slow (black) and “unexpected” fast H-L transition (red)
expecz‘ed ”-h/ghest‘ ga/n and ideal controller
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b EF&% Transport models for L-H and H-Ltransitior]_f

Two models for L-H and H-L transitions were used in simulations- “global”
and "local” models;

« |In ‘global approach”the code compares total heat flux through the
selected magnetic surface (either top-of-barrier or deeper inside, for
code stability) with most recent parametric fits for L-H transition power
threshold from Martin et al. J. Phys 2008 (including an atomic mass

dependency):
P, =0.0488-n277 . B>%®.S%%. /2

 In “Jocal approach”the code compares electron temperature at the
selected magnetic surface (normally on top-of-barrier or anticipated
top-of-barrier) with the “local” parametric fits for the electron
temperature at L-H transition (from E. Righi et al, Plasma Phys.
Control. Fusion 42 (2000) A199-A204).
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1 EF&% Transport models for L-H and H-L transition

After either comparing the heat flux Q with the power threshold A2, in

“global” approach or 7, ,,, with the critical temperature in “local” approach

transport within edge barrier is modified in 3 possible ways:
v' Plasma stays in L-mode if Q< P or T (< T cits

v’ Plasma enters H-mode with type-lll ELMs if P, ,<Q< y#P,,, 1.5>y>1
or Te, cr/l<Te, z‘op< g Te, crit 1 g <2—4.

v'Transport within edge barrier is reduced to neo-classical level
between ELMs.

v Type-lll ELMs are similar to type-I ELMs (with Gaussian increase in
edge transport coefficients) but with lower value of critical pressure

gradient o, ;,<1;

v’ Plasma enters H-mode with type-| ELMs if Q> y#P , or 7,,,>

&1 v With type-1 ELMs having higher value of critical pressure gradient
a..~1.8

cr-/
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4 EFjE%: Transport models for L-H and H-L transition

*We simulate all main plasma profiles including ion density and, in some

simulations, impurity;

* Modelling of ion density (and impurity) is probably the most difficult task

since it involves modelling of cold neutrals, which originate in the SOL,;

* Modelling on density pump out following H-L transition is even more
difficult as it involves not only SOL physics but also plasma-wall interaction

and neutrals removal by the cryopumps;

 Since we do not include SOL modelling in simulations presented here, we

assume that all neutrals and impurities originate at the separatrix;

*\We also assume that outgoing ions are recylced from the separatrix with
REC<1.
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A typical JET H-mode plasma with composite ELMs and fast H-L transition,
which is used as a template in our simulations (note a significant increase in
line radjation after each ELM).
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: E Fj%% “Non-local” model (1)

Non-local model can be tuned
to give the temporal evolution
in Wy, qualitatively in line with
experiment;

«JET #72207: preliminary data

*Discrete ELM model

Density trend is not so well
reproduced (adjustment of
recycling could help);
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“Non-local” model (2)

It [s iImportant fo stress that description of H-L transition, which includes
transition to type-Ill ELMs (two broken lines, one with discrete and one with
continuous ELMs), matches experimental observation much belter than

instant transition to L-mode.  Instant H-L transition
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g : E Fj%(% “Local” model (1)

m <1 — L-mode JET #72207: preliminary data
Ter Local model
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EF&% Comparison between “Global” and “Local” model

 Local model avoids non- JET #72207: preliminary data
physical dithering transitions

of the non-local model Local model
« Reasonably good description - Non-local model
of the L-H transition . °7
- Fails to describe the fast fall = *-
in energy and density during = 2-
H-L transition o+
+ Possible ways to improve = H =i
model include: 2 107
* Fine tuning of heat and a” 57 /
particle transport within o -
barrier; D 15
* Include radiation; < 10- it | ’
 No validated multi-machine  :os- |
local model exists! ® — ' |

]
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EFjE%: Role of radiation (1)

(note a significant increase in /ine rad/az‘/'gn after each ELM).
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T El:j%ﬁ- Role of radiation (3)

« Recent example of self-

consistent predictive . i
modelling of impurity ) L
redistribution ontop of | 1af Pnbi, Prad \
main ion density and ion &
and electron a0 v
. . 24 Ne
temperature simulation; g 20
» Note significant /’ o
temporary rise in |i =, Zeff
radiation following each o
type-l ELM (as observed
in experiments) . E L-mode \\
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T EF_}E% Summary and unresolved issues

v Global model describes better H-L transition but fails to reproduce L-
H transition due to persistence of strong dithering;

v"On the other hand, local model reproduces the dynamics of L-H
transition reasonably well but fails to reproduce fast H-L transition;

v Much more work is needed to bring density evolution in better
agreement with experiment;

v Impurity radiation might play an important role in the dynamics of H-L
transition;

v'Systematic comparison with experimental results are needed before

applying either model to ITER.
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“Non-local” model (1)
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0 EF)}&: Role of radiation (2)

« Adding some impurity radiation after big ELM crash helps to bring plasma to
a long type-lll period even with local H-L transition model,;
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