Report on IOS JA-9: Optimisation of Operational Space (OS) for Long-pulse Scenarios

- = Contributors (Potential contributors):
 - EU: F. Koechl, J. Citrin, J. Garcia, I. Voitsekhovich (+ ISM); JA: N. Hayashi; KO: Y.S. Na, RF: V. Leonov; US: J. M. Park, M. Murakami, A. Pankin; IO: T. Casper, S-H. Kim
- = Contact Person:
 - A. Polevoi (IO)
- = Relation to the ITER Physics Operation Workprogram:

DT baseline long-pulse scenarios $\Delta t_{FT} > 1000 \text{ s}$, $P_{fus} > 250 \text{ MW}$, Q > 5

= Basic goal:

To find the OS and optimal parameters (I_p , n, etc.) for long pulse operation and TBM program (There is no systematic scan on I_p , n yet)

= Scope of the task (general):

Assessment of operational space (OS) for long-pulse scenarios by 1.5D modelling

- fixed boundary equilibrium at current flat-top is sufficient,
- ICCD is not necessary (?) (the least efficient, mainly reduces Q [Murakami et al])
- q_{min}> 1 is not required (EC can be redirected from EL to UL to q=1.5, 2 at ST ?)

Phase I (mid-term)

Assessment of the OS with validated models by plasma current and density scan,

 $I_p = 8 - 15 \text{ MA}, n = n_{\text{NBI,shine}} - n_G; (n_{\text{NBI,shine}} \sim 3 \ 10^{19} \text{m}^{-3})$ Choice of optimal parameters comfortably far from the operational boundaries $\beta_N < 4 I_{i3}, n < n_G, P_{\text{SOL}} < 120 \text{ MW}, P_{\text{SOL}} > 1 (\sim 1.5?)$

Phase II (long term)

Sensitivity studies for modelling assumptions (pedestal, Z_{eff}, n(0)/<n>, etc)

Plan for 2011(see Appendix for motivation)

- A) Density scan $n = n_{NBI,shine} n_G$ for each of the models: for $I_p = 15$ MA with basic set of CD: 16.5 MW on- + 16.5 MW off-axis NBCD+ 20 MW of the outermost EL ECCD keeping the same assumptions (pedestal, etc) as for inductive baseline scenario with $P_{fus} = 500$ MW
- B) Gathering of available modelling data I_p, n (for data list see attached Exel file) If assumptions are different from the reference case, I_p=15 MA then comment what and why is modified

= Scope of the task (2011):

A. For those who plan new modelling for long-pulse:

- (0) Start from ITER inductive base line scenario $I_p=15$ MA, $P_{fus} =500$ MW, Q = 10, $\Delta t_{FT} =400$ s with your model (CDBM, MMM, GLF23, BgB, etc) with 16.5 MW innermost + 16.5 MW outermost NBI + 20 MW outermost ECCD (EL)):
- (1) Keep the same input and assumptions you used to simulate 500 MW baseline scenario: I_p=15 MA, P_{aux} = 50 MW (53 MW?), geometry, pedestal, etc;
- (2) Scan (reduce) density (lower limit $n > n_{NBI,shine} \sim 3 \ 10^{19} \text{m}^{-3}$)
 - keeping pedestal parameters, $nT_e \sim 35 \text{ keV}^{*10^{19}}\text{m}^{-3}$, $\Delta_{ped}/\rho_a \sim 0.04$)
 - keeping boundary conditions, n_{e,edge} = 3 10¹⁹m⁻³, T_{edge} ~ 0.2 keV at the level of saturation predicted by SOLPS with P_{SOL} ~ 100 MW

(3) For each point of the scan provide the output listed in attached EXEL file (just fill it?)

Expected results:

- P_{fus} and Q will drop but pulse length will increase due to increase of the CD efficiency (~T/n) and increase of current conductivity (1/Res~ T^{3/2}). $P_{FUS} = 250$ MW and Q =5 are still acceptable for hybrid long pulse operation.

= Scope of the task (2011):

- **B.** For those who already have data for long-pulse:
- Please just fill the attached EXEL file (including the following comments below)
- Specify the model used for core transport, (T_i,T_e,n_{He},n_e, impurities...?) and pedestal
- Describe plasma configuration if different from full bore baseline case: BxR = 5.3x6.2 Tm; a/R=2/6.2 m, k_a=1.76 (k_a = S/πa²), triangularity ~ 0.5,
- Describe of the set and configuration of the H&CD (power and location) if different from proposed in (A):
- If assumptions are different from the reference case, I_p =15 MA then comment what and why is modified

= Present status:

Data provided by October 20, 2011

- **F.** Koechl (BgB, GLF23 with JINTRAC, new modelling: $I_p = 15$ MA density scan)
- **A.** Polevoi (Scaling Based with ASTRA, new modelling: $I_p = 15$ MA density scan)
- **N.** Hayashi (CDBM with TOPICS, new modelling: $I_p = 15$ MA density scan)
- V. Leonov (Scaling Based with ASTRA, new modelling: $I_p = 15$ MA density scan)
- A. Pankin (MMM71, Weiland with ASTRA, new modelling: $I_p = 15$ MA density scan)
- J. M. Park (GLF23 with FASTRAN, new modelling: $I_p = 15 \text{ MA } 33 \text{ NBI} + 20 \text{ IC}$)
- M. Murakami (GLF23, CDBM with FASTRAN, new modelling: $I_p = 15$ MA,

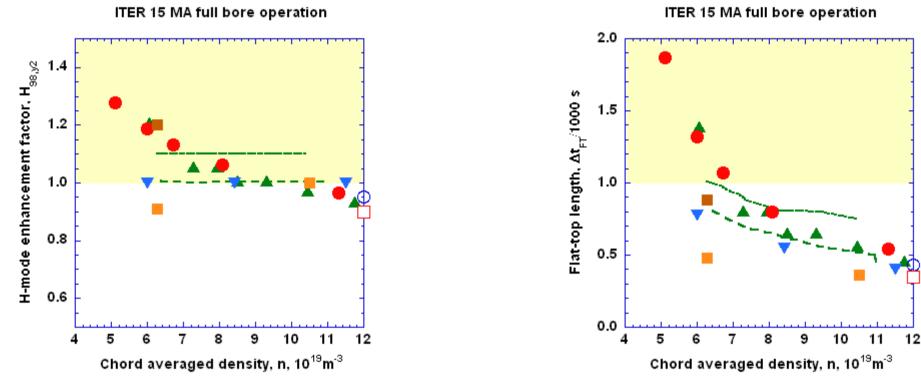
Sensitivity studies to ST model, heating mix, EC location)

J. Citrin (GLF23 with CRONOS, available data analysis: $I_p = 11.5-12.2$ MA, sensitivity studies)

Potential contributors:

J. Garcia (CRONOS), S-H. Kim (CORSICA), Y.S. Na ???

Present status summary for 2011

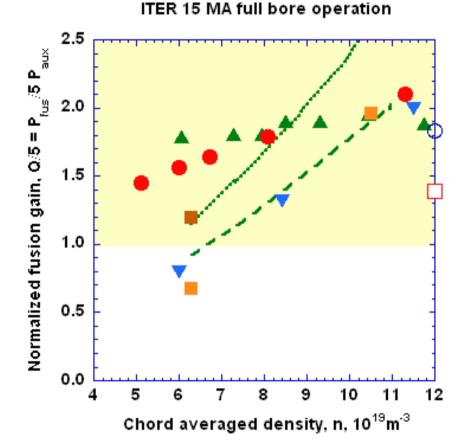

(1) 15 MA, Q=10, P_{fus} = 500 MW Done by FK, NH, VL, AP, APn full bore plasma inductive Done by JMP, MM for slim SS geometry ($P_{fus} > 500$ MW, $\Delta t_{FT} > 400$ s) NB: Potentially interesting area for others for later optimization?

(2) Density scan for one slice: I_p = 15 MA Done by FK, NH, VL, AP

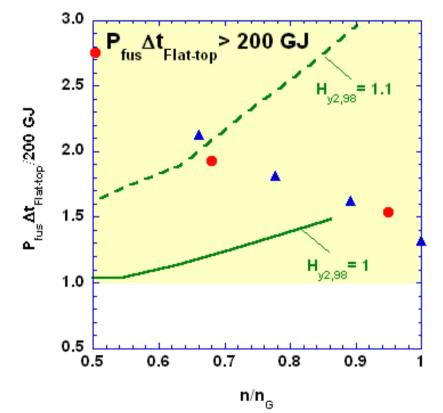
- Long pulse operation ∆t_{FT} ~1000 s becomes possible for 15 MA at low densities, n/n_G ~0.5 for all models with H_{y2,98} ~ 1.1 even with day-1 mix:
 33 MW NBI + 20 MW EC for BgB, GLF23, SB(AP), SB(VL)
- Fusion gain factor Q drops with density reduction. For SB(VL) and CDBM(NH) it drops below Q=5.
- Load to divertor drops with density reduction
- Fluence increases for BgB and GLF23 with density reduction

Would be the next step for JMP, MM, APn (plan for 2012??)

(2) I_p=15 MA density scan-I: Same assumptions as for 500 MW, 15 MA, Q =10



Density reduction increases $H_{y2,98} \sim 1 \rightarrow 1.1$ for BgB, GLF23, and reduces for CDBM (NH)


Density reduction to $n/n_G \sim 0.5$ increases flattop length to 800-1000 s (~500 s CDBM (NH))

BgB, GLF23, SB: $\Delta t_{FT} \sim 1000$ s becomes possible for 15 MA at low densities, n/n_G ~0.5 with H_{y2,98} ~ 1.1 with the same model assumptions used for Q=10

(2) I_p=15 MA density scan-I: Same assumptions as for 500 MW, 15 MA, Q =10

ITER 15 MA full bore operation

For BgB and GLF23 Q drops with density reduction, but remains high Q> 5,

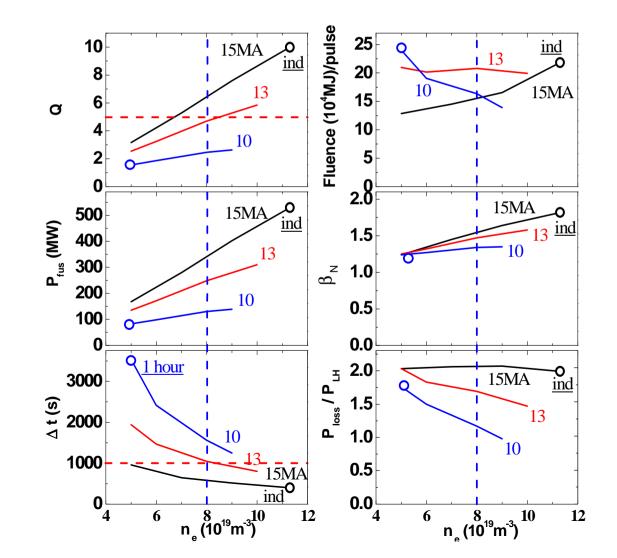
For BgB and GLF23 Fluence per shot remains higher than for baseline: $P_{fus} \Delta t_{FT}$ > 200 GJ. Fluence reduces for SB(VL) and CDBM (NH).

IOS ITPA, 18-21 2011, Kyoto, Japan

by A.R.Polevoi et al

(3) Density scan for the range $I_p = 10-15$ MA (I_p -n OS): (see Basic goal and Phase-I above) done by VL with SBM by ASTRA V. Leonov 7th IOS TG Meeting 18-21 Oct. 2011, Kyoto, Japan

A.R. Polevoi, et al 37th EPS. (Dublin, Ireland, 2010) P2.187

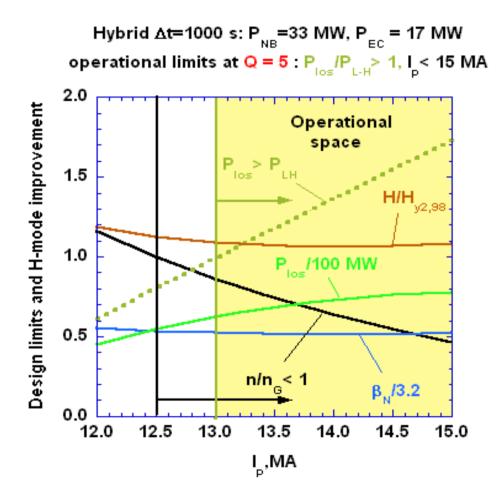

Motivation of plasma current and plasma density choice is presented:

 I_{p} and n for 1000 s operations are the solution of the set of equations:

 $Q(I_{p},n) = 5,$

∆t(I_p,n) = 1000 s

Will be a natural next step for FK, NH (Plan for 2012??)



IOS ITPA, 18-21 2011, Kyoto, Japan

by A.R.Polevoi et al

(3) Density scan for the range I_p = 10-15 MA (I_p-n OS): (see Basic goal and Phase-I above) done by AP (2010) A.R. Polevoi, et al 37th EPS. (Dublin, Ireland, 2010) P2.187

So, VL already has sufficient information to draw I_p , n OS similar to this one =====

Hybrid operational space for P_{aux} = 50 MW

=> Plans:

- (1) General : JA9 to be continued (2012)
- (2) Different contributors are at different phases. Thus they follow an individual plan for 2012:
 - a) For those, who plan to join: choose way of contribution (A, B) (Potential contributors)
 - b) For those, who chosen A: start with step 1 doing density scan starting from 500 MW, I_p=15 MA (JMP, MM, APn)
 - c) For those, who passed step 1: continue with Phase-I doing I_p-n scan for other currents similar to step 1 (FK, NH)
 - d) For those, who passed Phase I: continue with sensitivity studies near the chosen optimum (VL, AP), draw the I_p,n OS