
MMM Transport Model (Version 7.1)

Lixiang Luo (lixiang.luo@lehigh.edu)
Tariq Rafiq (tar207@lehigh.edu)

Glenn Bateman (bateman@lehigh.edu)
Arnold Kritz (kritz@lehigh.edu)

Lehigh University, Physics Department
16 Memorial Drive East, Bethlehem, PA 18015, USA

April 21, 2011

1 Overview

This document contains a brief description of the Multi-mode Transport Model (MMM) Fortran 90
software package. The package consists of two parts:

• The MMM module called modmmm7_1

• A simple driver program called testmmm

The module contains the core subroutine mmm7_1, which evaluates the effective transport diffusivities
for anomalous transport. The subroutine calculates the diffusivities based on four internal models:

1. Weiland module by J. Weiland and his group in Göteborg Sweden [1],

2. Drift-resistive-inertial Ballooning Modes (DRIBM) by [2],

3. Horton model for ETG anomalous transport [3], with the Jenko threshold [4] available as an
option.

Results from internal models are combined linearly, where the weights of these internal models are
equal by default. Some model options, such as the switch for turning on the Jenko threshold, are
organized as internal parameters. Both the model weights and internal parameters have their default
values, but can be specified if necessary. This feature is handled by Fortran 90 optional arguments. A
helper subroutine called set_mmm7_1_switches is included in the module to assist users to set
up the argument arrays for internal parameters.

The MMM code package also include a simple driver program, testmmm, along with several
test cases, in which sample input and output files are given. The driver program mainly serves two
objectives. First, it allows users of MMM to verify the integrity of their compilation of MMM.
Second, it can be used as an example or template on how to use MMM.

1

An important feature of this version of MMM is the extensive use of optional arguments, which
requires Fortran 90 explicit interface. Argument association by keywords are strongly recommended
even when it is not mandatory. See Section 2.3 for more details.

All floating-point numbers (both variables and constants) in this software package are defined with
a REAL(R8) type, where R8=KIND(0D0), such that this type is equivalent to the predefined type
DOUBLE PRECISION. Users are strongly recommended to use consistent data types throughout
their own codes.

2 Subroutine mmm7_1

The full matrix form of anomalous transport is assumed to take the following form

∂

∂ t

nHTH

nH

neTe

nZ
...

=−∇ ·

vF1 nHTH

vF2 nH

vF3 neTe

vF4 nZ
...

+

STH

SnH

STe

SnZ
...

= ∇ ·

D1,1nH 0

D2,2
...

0 D3,3ne

. . .
. . .

∇

TH

nH

Te

nZ
...

+∇ ·

v1 nHTH

v2 nH

v3 neTe

v4 nZ
...

+

STH

SnH

STe

SnZ
...

 (1)

The mmm7_1 subroutine takes multiple plasma profile arrays as input and calculates the anoma-
lous transport diffusivities Di,i and convective velocities v j (or pinches in the case of momentum
transport) as output. Both overall diffusivities and their contributing components from internal mod-
els can be obtained, while the latter is optional.

2.1 Input Arguments

The majority of input arguments are plasma state profiles, listed in Table 1. All the 1-D arrays listed
therein are assumed to be defined on flux surfaces called zone boundaries where the transport fluxes
are to be computed. The number of flux surfaces is given by another input argument npoints. Note
that these dummy arguments are defined as assumed-shape arrays. This allows actual arguments
whose sizes are larger than npoints to be passed to the subroutine safely, although only the first
npoints elements are involved in calculations. The only scalar input argument is csnd0, an op-
tional argument for specifying the sound speed at the magnetic center. csnd0 and dkdeps should
only be used by those codes which use mmm7_1 locally (npoints is always 1).

The remaining input arguments are used for fine control of the subroutine’s behaviors. lprint
controls the verbose level of diagnostic output and nprout specifies the I/O unit number for diag-
nostic output. Because diagnostic output is only used at very few places in the current version, these
two arguments mainly serve as place holders for code developers who may need to debug the code.

2

Table 1: Input Arguments
Name Sym. Unit Meaning
rmin r m Minor radius
rmaj R m Major radius
elong κ Local elongation of zone boundary
ne ne m−3 Electron density
ni ni m−3 Sum over thermal hydrogenic ion densities
nz nz m−3 Sum over impurity ion densities
nf n f m−3 Electron density from fast (non-thermal) ions

xzeff Zeff Mean charge
te Te keV Electron temperature
ti Ti keV Temperature of thermal ions
q q Magnetic q-value

btor BT Tesla Toroidal magnetic field (RBtor)/rma j

zimp Zimp Mean charge of impurities ∑imp nimpZimp/∑imp nimp

aimp Mimp Mean atomic mass of impurities ∑imp nimpMimp/∑imp nimp

ahyd Mh Mean atomic mass of hydrogen ions ∑h nhMh/∑h nh

aimass Mi Mean atomic mass of thermal ions ∑i niMi/∑i ni

wexbs ωE×B rad/s E×B shearing rate [5]
gne gne Normalized ne gradient −R(dne/dr)/ne

gni gni Normalized ni gradient −R(dni/dr)/ni

gnh gnH Normalized nH gradient −R(dnh/dr)/nh

gnz gnZ Normalized nZ gradient −R(dZnZ/dr)/(ZnZ)

gte gTe Normalized Te gradient −R(dTe/dr)/Te

gti gTi Normalized Ti gradient −R(dTi/dr)/Ti

gq gq Normalized q gradient R(dq/dr)/q
vtorin vtor m/s Toroidal velocity
gvrin gvtor Normalized toroidal velocity gradient R(dvtor/dr)/vtor

vpolin vpol m/s Poloidal velocity
gvpin gvpol Normalized poloidal velocity gradient R

(
dvpol/dr

)
/vpol

vparin vpar m/s Parallel velocity
gvparin gvpar Normalized poloidal velocity gradient R

(
dvpar/dr

)
/vpar

dkdeps κ ′ Elongation gradient w.r.t. aspect ratio dκ/dε , ε = r/R

3

Table 2: Real internal parameters
Model # Default Meaning Keyword

Weiland 1 1.0 Momentum pinch scaling
factor

KW20_C_MOM_PINCH_SCALE

2 0.0001 Lower bound of electron
thermal diffusivity

KW20_C_XKE_MIN

3 100.0 Upper bound of electron
thermal diffusivity

KW20_C_XKE_MAX

DRIBM 1 0.0 Lower bound of magnetic
shear

KDBM_C_SHEAR_LBOUND

ETG 1 0.06 Scaling factor for
electrostatic regime

KETG_C_CEES_SCALE

2 0.06 Scaling factor for
electromagnetic regime

KETG_C_CEEM_SCALE

cmodel specifies the linear weights for internal models. This is an optional argument and only
the first four elements are used.

• If associated: cmodel(1)~cmodel(3) are assigned as the weights for Weiland20, DRIBM
and ETG, respectively.

• If not associated: equivalent to cmodel=(/1.0,1.0,1.0/).

cswitch specifies internal parameters of REAL(R8) type. This is an optional argument. The
second dimension is corresponding to the index of an internal model (same definition as in cmodel),
and the first dimension to the index of the adjustable parameter for that particular model. For example,
the first real adjustable parameter for the Weiland model should be stored in cswitch(1,1).

• If associated: the real internal parameters are assigned the given values of the actual argument.

• If not associated: all real internal parameters default to internally set values.

An up-to-date list of the real internal parameters is given in Table 2, along with their default values.
lswitch specifies internal parameters of INTEGER type. This is an optional argument. The

second dimension is corresponding to the index of an internal model (same definition as in cmodel),
and the first dimension to the index of an integral adjustable parameter for that particular model.
For example, the second integral adjustable parameter for the DRIBM model should be stored in
lswitch(2,2).

• If associated: the integral internal parameters are assigned to the given values of the actual
argument.

• If not associated: all integral internal parameters default to internally set values.

An up-to-date list of integral adjustable internal parameters is given in Table 3, along with the default
values. For ON/OFF type integral switches, 0 would mean OFF and a positive integer would mean
ON.

4

Table 3: Integral internal parameters
Model # Default Meaning Keyword

Weiland 1 0 Use latest Weiland model KW20_L_LATESTMOD
2 0 Enable E×B shear effects KW20_L_EXB

DRIBM 1 0 Enable limitation of gradients KDBM_L_GRND_LIMIT
2 0 Enable E×B shear effects KDBM_L_EXB

ETG 1 1 Use Jenko threshold KETG_L_NLTHR

Table 4: Overall effective diffusivities
Name Unit Meaning
thiig m2/s Effective total ion thermal diffusivity
thdig m2/s Effective total hydrogenic ion diffusivity
theig m2/s Effective total electron thermal diffusivity
thzig m2/s Impurity ion diffusivity from the Weiland model
thtig m2/s Toroidal momentum transport from the Weiland model
thttig m2/s Poloidal momentum transport from the Weiland model

2.2 Output Arguments

Most of the output arguments are calculation results, with one exception, nerr, which stores the
error code (> 0), if errors are detected, or 0, if the execution is successful. The dummy arguments
for profile output are defined as assumed-shaped arrays. The actual arguments must be allocated in
advance with enough space (npoints is the minimal dimension) to store all return values. The
overall effective diffusivities, represented by Di,i in Eq. (1), are given in Table 4. They are weighted
sums of contributions from internal models, whose weights can be individually adjusted (see cmodel
in Section 2.1).

Table 5 lists the component output arrays, which give the individual contribution from each in-
ternal model. Generally, these arrays are used for diagnostic output only. Because they are optional,
users are not required to associate them with actual arguments. Nothing would happen if they are
not associated. When they are indeed associated, the actual argument arrays must be allocated in
advance with enough space to store the output data (npoints is the minimal dimension). Note that
the momentum diffusivities are only provided by the Weiland model and already explained in Table 4.

Table 5: Component diffusivities
Name Unit Meaning
xkiW20 m2/s Ion thermal diffusivity from the Weiland model
xdiW20 m2/s Particle diffusivity from the Weiland model
xkeW20 m2/s Electron thermal diffusivity from the Weiland model
xkiDBM m2/s Ion thermal diffusivity from the DRIBM model
xkhDBM m2/s Hydrogenic ion diffusivity from the DRIBM model
xkeDBM m2/s Electron thermal diffusivity from the DRIBM model
xkeETG m2/s Electron thermal diffusivity from the Horton ETG model

5

Table 6: Dominating growth rates and frequencies of Weiland and DRIBM modes
Name Unit Meaning

gammaDBM s−1 Growth rate of the greatest DRIBM mode
omegaDBM rad/s Frequency of the greatest DRIBM mode

gammaW20ii s−1 Ion channel growth rate of the greatest Weiland ion mode
omegaW20ii rad/s Ion channel frequency of the greatest Weiland ion mode
gammaW20ie s−1 Electron channel growth rate of the greatest Weiland ion mode
omegaW20ie rad/s Electron channel frequency of the greatest Weiland ion mode
gammaW20ei s−1 Ion channel growth rate of the greatest Weiland electron mode
omegaW20ei rad/s Ion channel frequency of the greatest Weiland electron mode
gammaW20ee s−1 Electron channel growth rate of the greatest Weiland electron mode
omegaW20ee rad/s Electron channel frequency of the greatest Weiland electron mode

Table 7: Fluxes and pinches
Name Unit Meaning

vflux(1,:) W/m2 Total ion thermal flux (Weiland + DRIBM)
vflux(2,:) m−2s−1 Total hydrogenic ion flux (Weiland + DRIBM)
vflux(3,:) W/m2 Total electron thermal flux (Weiland + DRIBM)
vflux(4,:) m−2s−1 Total impurity ion flux (Weiland)
velthi(1,:) m/s Ion thermal convective velocity (Weiland)
velthi(2,:) m/s Hydrogenic ion particle convective velocity (Weiland)
velthi(3,:) m/s Electron thermal convective velocity (Weiland)
velthi(4,:) m/s Impurity ion particle convective velocity (Weiland)
velthi(5,:) m/s Toroidal momentum pinch (Weiland)
velthi(6,:) m/s Poloidal momentum pinch (Weiland)

vflux contains the return values of four fluxes. velthi contains convective velocities and
momentum pinches, or v j as in Eq. (1). The content of these two argument is explained in Table 7.
They are all optional, whose behavior is similar to the component diffusivities.

2.3 Argument Association by Keywords

Because the mmm7_1 subroutine have optional arguments, explicit interface is required. This is
usually done through the “USE modmmm7_1” statement at the beginning of a Fortran program. As
required by the Fortran 90 standard, argument association by keywords must be used if any optional
argument is omitted. Even in the case where no optional argument is omitted, the use of argument
keywords is still strongly recommended, considering the large amount of arguments involved. An
example of this style of subroutine call is given in the source file of the driver program. One clear
advantage of argument keywords is that the compiler can always determine the correct argument
association, regardless of the order and the selection of actual arguments. This also minimize the
need to update the user’s codes if the argument list of MMM is to be changed in the future.

A complete argument keyword association of mmm7_1 looks like this:

6

CALL mmm7_1(&
rmin = zrminor, rmaj = zrmajor, elong = zelong, &
ne = zdense, ni = zdensh, nz = zdensimp, &
nf = zdensfe, xzeff = zxzeff, te = ztekev, &
ti = ztikev, q = zq, btor = zbtor, &
zimp = zavezimp, aimp = zamassimp, ahyd = zamasshyd, &
aimass= zaimass, wexbs = zwexbs, &
gne = zgrdne, gni = zgrdni, gnh = zgrdnh, &
gnz = zgrdnz, gte = zgte, gti = zgti, &
gq = zshear, dkdeps = dkdeps, &
gvrin = zgrdvphi,vtorin = zvtorin, gvpin = zgrdvtht, &
vpolin= zvpolin, gvparin= zgrdvpar, vparin= zvpar, &
dqdxi = zqprime, zwidth = zrminor, rmajbnd= zrmajor, &
thiig = zthiig, thdig = zthdig, theig = ztheig, &
thzig = zthzig, thtig = zthtig, thttig = zthttig, &
xkiW20= xkiW20, xdiW20 = xdiW20, xkeW20 = xkeW20, &
xkiDBM= xkiDBM, xkhDBM = xkhDBM, xkeDBM = xkeDBM, &
xkeETG= xkeETG, xkePLC = xkePLC, &
gammaW20 = gammaW20, omegaW20 = omegaW20, &
gammaDBM = gammaDBM, omegaDBM = omegaDBM, &
npoints = npoints, &
lprint = lprint, nprout = hfDebug, nerr = nerr, &
velthi = zvelthi, vflux = zvflux, &
cmodel = cmodel, cswitch = cmmm, lswitch = lmmm)

where the association of actual arguments and dummy arguments are explicitly indicated by a “<dummy
argument> = <actual argument>” form. In fact, the order of arguments has no effect on
argument association, eliminating the frequent and hard-to-debug error which happens when some
arguments are left out. Users can take advantage of the optional arguments, without worrying about
incorrect association. Consider a much simplified case:

• All internal models are turn on, with default weights.

• Default internal parameters are used.

• Only the thermal diffusivities are needed.

• No diagnostic output is needed.

In this case, the statement can be shortened to

CALL mmm7_1(&
rmin = zrminor, rmaj = zrmajor, elong = zelong, &
ne = zdense, ni = zdensh, nz = zdensimp, &
nf = zdensfe, xzeff = zxzeff, te = ztekev, &
ti = ztikev, q = zq, btor = zbtor, &
zimp = zavezimp, aimp = zamassimp, ahyd = zamasshyd, &

7

aimass= zaimass, wexbs = zwexbs, &
gne = zgrdne, gni = zgrdni, gnh = zgrdnh, &
gnz = zgrdnz, gte = zgte, gti = zgti, &
gq = zshear, &
gvrin = zgrdvphi, vtorin= zvtorin, gvpin = zgrdvtht, &
vpolin= zvpolin, gvparin= zgrdvpar, vparin= zvpar, &
thiig = zthiig, theig = ztheig, &
npoints = npoints, lprint = 0, nprout = 0, nerr = nerr, &
velthi = zvelthi, vflux = zvflux)

As we can see, the unused arguements do not need to be defined at all. This subroutine call can also
be conveniently expanded. For example, if we want to turn on Jenko’s threshold for the Horton ETG
model, we can simply write

CALL set_mmm7_1_switches(lmmm = lmmm7, KETG_L_NLTHR = 1)
CALL mmm7_1(&

rmin = zrminor, rmaj = zrmajor, elong = zelong, &
ne = zdense, ni = zdensh, nz = zdensimp, &
nf = zdensfe, xzeff = zxzeff, te = ztekev, &
ti = ztikev, q = zq, btor = zbtor, &
zimp = zavezimp, aimp = zamassimp, ahyd = zamasshyd, &
aimass= zaimass, wexbs = zwexbs, &
gne = zgrdne, gni = zgrdni, gnh = zgrdnh, &
gnz = zgrdnz, gte = zgte, gti = zgti, &
gq = zshear, &
gvrin = zgrdvphi, vtorin= zvtorin, gvpin = zgrdvtht, &
vpolin= zvpolin, gvparin= zgrdvpar, vparin= zvpar, &
thiig = zthiig, thdig = zthdig, theig = ztheig, &
thzig = zthzig, thtig = zthtig, thttig= zthttig, &
npoints = npoints, lprint = 0, nprout = 0, nerr = nerr, &
velthi = zvelthi, vflux = zvflux, lmmm = lmmm7)

The change involves only one variable lmmm7 and a subroutine call to set_mmm7_1_switches
(see Section 3 for more details).

3 Subroutine set_mmm7_1_switches

This is a subroutine to assist users setting up internal parameters using a “<keyword> = <value>”
approach, instead of manually setting the values of lswitch and cswitch arrays for subroutine
mmm7_1. Users do not need to know the index numbers of specific parameters. Also, only the
parameters of interest need to be specified, while all other parameters will be assigned the default
values automatically. Currently MMM7.1 does not have a large number of internal parameters. How-
ever, as more features are added to the future versions of MMM, the index numbers of the internal
parameters may be subject to change. Because the keywords remain the same even the index num-
bers are changed, users of MMM7.1 do not need to update their codes if they are already using
set_mmm7_1_switches to set internal parameters.

8

The general syntax of using this subroutine is as follows:

CALL set_mmm7_1_switches(&
cmmm = <cswitch>, lmmm = <lswitch>, &
<keyword 1> = <value 1>, &
<keyword 2> = <value 2>, &
...)

where <cswitch> and <lswitch> are the array variables which will be passed to mmm7_1 sub-
routine. Keywords are listed in Table 2 and 3. Only those parameters that need to be change should
be listed, the subroutine will fill the remaining parameters using their corresponding default values.
Note that if only the integer parameters are involved, the argument for real-type is not required, and
vice versa. For example, if the user only want to turn on E×B shear effects in DRIBM model and
leave everything else by default, they can use

CALL set_mmm7_1_switches(lmmm = lmmm7, KDBM_L_EXB = 1)

and then pass lmmm7 as the actual argument for lswitch to mmm7_1:

CALL mmm7_1(... , lswitch = lmmm7)

where all other elements of lmmm7 are already given the default values by set_mmm7_1_switches.
All the real-type internal parameters will take the default values because no actual argument is speci-
fied for cswitch.

4 Driver Program testmmm

The driver program looks for a file called “input” in the current directory and invokes mmm7_1with
the supplied input data. Both the input data and results are then written into a file called “output”
as tables. The input file is written in the Fortran NAMELIST format. Two kinds of input data can
be accepted. In the first kind the contents of the plasma state arrays are given in numbers. The size
of arrays must be specified by the npoints variable. With the second kind of input data, the user
needs to specify a series of polynomial parameters for constructing the plasma state profiles. These
are mostly parabolic profiles (or an exponentiation with a specified exponent). Note that this type can
only generate trivial (zero) profiles for momentum profiles (and their gradients). The NAMELIST
header of the data file need to be changed according to the choice of the input type. Use

&testmmm_input_1stkind

if the first kind is given, or use

&testmmm_input_2ndkind

if the second kind is given. Regardless of the choice of data type, the internal parameters can be
passed using arrays, which are associated as

9

cmmm(1:,1)=cW20
cmmm(1:,2)=cDBM
cmmm(1:,3)=cETG
cmmm(1:,4)=cPLC
lmmm(1:,1)=lW20
lmmm(1:,2)=lDBM
lmmm(1:,3)=lETG
lmmm(1:,4)=lPLC

cmodel can also be specified.
The output file is a plain text spreadsheet with clearly defined headers and column numbers.

Please refer to the MMM documentation and sample input files for more details.

5 PTRANSP settings

MMM7.1 can be used with the predictive mode of PTRANSP. It has been installed and tested to
be working correctly in PTRANSP running on PPPL clusters. As for 2011 the predictive model of
MMM7.1 is capable of temperature prediction while density prediction is being developed. MMM7.1
has been included in the PTRANSP source repository maintained by PPPL. To use MMM7.1 as the
anomalous transport model in PTRANSP, NKEMOD and NKIMODA should be set to 19. The following
TRDAT variables are used by PTRANSP for controlling MMM7.1:

Name Type Default Purpose
XIMINMMM Real 0.0 Inner boundary for predictions
XIMAXMMM Real 1.0 Outer boundary for predictions

NLETG Logical .F. Switch for Horton ETG model
NLETGJTHR Logical .F. Switch for Jenko threshold in Horton ETG model

L_DRBM Integer 1 Switch for DRIBM model
NLEXB Logical .F. Switch for E×B shear effects in Weiland model

LMMM07(1) Integer 1 Switch for using newer momentum model in Weiland
LMMM07(2) Integer 1 Switch for E×B shear effects in DRIBM model
CMMM07(1) Real 1.0 Multiplier for piches in Weiland model

FACEXB Real 1.0 E×B shear multiplier in Weiland model

References

[1] J. Weiland, Collective modes in inhomogeneous plasma: kinetic and advanced fluid theory, ser.
Plasma Physics. Institute of Physics Publishing, 2000.

[2] T. Rafiq, G. Bateman, A. H. Kritz, and A. Y. Pankin, “Development of drift-resistive-inertial
ballooning transport model for tokamak edge plasmas,” Physics of Plasmas, vol. 17, no. 8, p.
082511, 2010.

[3] W. Horton, P. Zhu, G. T. Hoang, T. Aniel, M. Ottaviani, and X. Garbet, “Electron transport in
Tore Supra with fast wave electron heating,” Physics of Plasmas, vol. 7, no. 5, pp. 1494–1510,
2000.

10

[4] F. Jenko, W. Dorland, and G. W. Hammett, “Critical gradient formula for toroidal electron tem-
perature gradient modes,” Physics of Plasmas, vol. 8, no. 9, pp. 4096–4104, 2001.

[5] K. H. Burrell, “Effects of E×B velocity shear and magnetic shear on turbulence and transport in
magnetic confinement devices,” Physics of Plasmas, vol. 4, no. 5, pp. 1499–1518, 1997.

11

	Overview
	Subroutine mmm7_1
	Input Arguments
	Output Arguments
	Argument Association by Keywords

	Subroutine set_mmm7_1_switches
	Driver Program testmmm
	PTRANSP settings

