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Preparation for macOS (1)

• Install Xcode

– Xcode: development environment on macOS
– Use App Store
– Category: Development
– Choose and install Xcode

• Install Command Line Tools

– Command Line Tools: various Unix commands for development
– Corresponding to the version of Xcode
– xcode-select --install
– or download from Apple Developer site

• Install XQartz

– Download and install XQartz from https://www.xquartz.org
• Install java (when necessary)

– https://www.java.com/en/download/mac download.jsp



Preparation for macOS (2)

• Install Macports

– Macports site: https://www.macports.org
– Select tab: Installing MacPorts
– Download the MacPorts installer for appropriate macOS version
– Run the MacPorts installer

• Set environmental variables in $HOME/.zprofile

– Add export PATH=/opt/local/bin:$PATH in .zprofile
– Add export MANPATH=/opt/local/man:$MANPATH in .zprofile

• Install compiler and related modules

– sudo port install gmake cmake imake gcc13 mpich
– sudo port select gcc mp-gcc13
– sudo port select mpi mpich-mp-fortran



Preparation for macOS (3)

• To update Macports: (If rsync is available)

– sudo port selfupdate
– sudo port upgrade outdated

• If rsync is not available, port selfupdate will hang up.

– See https://trac.macports.org/wiki/howto/SyncingWithGit
– Create the source list
◦ Download the source list in MacPorts server by git clone
◦ Modify macports config to read the source list

– Find outdated ports and upgrade them
◦ Update the source list by git pull
◦ Sync installed with the source list and select outdated (takes long)
◦ sudo port upgrade outdated



In case of macOS major version-up

• macOS major version-up: e.g. 14.3 =⇒ 15.0
• Update Xcode and Command Line Tools for the new version
• Install a new Macports binary for the new version
• Migrate Macports: make ports list, uninstall ports, reinstall ports

– port -qv installed > myports.txt
– port echo requested | cut -d ’ ’ -f 1 | uniq > requested.txt
– sudo port -f uninstall installed
– sudo port reclaim
– curl -L -O https://github.com/macports/macports-contrib/raw/master/restore ports/restore ports.tcl

– chmod +x restore ports.tcl
– xattr -d com.apple.quarantine restore ports.tcl
– sudo ./restore ports.tcl myports.txt
– sudo port unsetrequested installed
– xargs sudo port setrequested < requested.txt

• See more detail in https://trac.macports.org/wiki/Migration



Preparation for Ubuntu

1. Install required modules

sudo apt-get install gfortran-13

sudo apt-get install gcc-13

sudo apt-get install g++-13

sudo apt-get install git

sudo apt-get install xorg-dev

sudo apt-get install valgrind

sudo apt-get install cmake

sudo apt-get install python

sudo apt-get install mpich



How to use git (1)

• git: version and remote repository control facility

• Repositories

– local: in your machine
– remotes: in remote servers
– remotes/origin: in default server: bpsi.nucleng.kyoto-u.ac.jp

• Branches

– There are several branches for code development
◦ master: default, stable version, often rather old
◦ develop: latest version, where I am working
◦ others: branches for working specific modules

– cd task
– git branch : list branch names, local only
– git branch -a : list branch names, local and remote



How to use git (2)

• To use task/develop branch (cd task)

– Create local branch develop and associate it with remote de-
velop

– git checkout -t -b develop origin/develop
– git branch

• Change working branch

– git checkout master
– git checkout develop

• Update working branch: download from remote repository

– git pull
◦ Your modification is kept, if committed.
◦ If uncommitted modification remains, no overwrite.
◦ use git stash to keep away your modification.
◦ If there are conflicts with your committed modification, the con-

flicts are indicated in the file. Correct them and git pull again.



How to use git (3)

• To check your modification

– git status

• To commit your modification with message: only local depository
is updated. message is required.

– git commit -a -m’message’

• To list all modification

– git log

• To show difference from committed repository

– git diff [filename]

• For more detail, visit

– https://git-scm.com/documentation



Install TASK (1)

• Check availability of git: just command input “git”

• Set your identity: To record who changed the code?

– git config - -global user.name “[your-full-name]”
– git config - -global user.email [your-mail-address]
– For example,
◦ git config - -global user.name “Atsushi Fukuyama”
◦ git config - -global user.email fukuyama@nucleng.kyoto-u.ac.jp

– Data is saved in $HOME/.gitconfig

• Create a working directory: any directory name is OK

– mkdir git
– cd git



Install TASK (2)

• Download TASK and necessary libraries for download only

– git clone https://bpsi.nucleng.kyoto-u.ac.jp/pub/git/gsaf.git
– git clone https://bpsi.nucleng.kyoto-u.ac.jp/pub/git/bpsd.git
– git clone https://bpsi.nucleng.kyoto-u.ac.jp/pub/git/task.git -b develop

• Download TASK and necessary libraries for download and upload

– git clone ssh://bpsi.nucleng.kyoto-u.ac.jp/pub/git/gsaf.git
– git clone ssh://bpsi.nucleng.kyoto-u.ac.jp/pub/git/bpsd.git
– git clone ssh://bpsi.nucleng.kyoto-u.ac.jp/pub/git/task.git -b develop
– bpsi should be replaced by username@bpsi when the local and

remote usernames are different.

• Three directories will be created

– gsaf: graphic library
– bpsd: data interface library
– task: main TASK directory



Install TASK (3)

• Install graphic library GSAF

– cd git/gsaf/src
– Copy Makefile.arch appropriate for your environment
◦ for macOS: cp ../arch/macos-gfortran/Makefile.arch .
◦ for Ubuntu: cp ../arch/ubuntu-gfortran64-static/Makefile.arch .

– Edit Makefile.arch: adjust BINPATH and LIBPATH to available ones
◦ BINPATH: graphic commands are located, should be included in

$PATH in ∼/.profile or ./zprofile
◦ LIBPATH: graphic libraries are located, should be included in li-

brary path for compiling applications using the graphic libs.
– make
– make install
◦ if BINPATH is protected, use “sudo make install”



Install TASK (4)

• Check the availability of GSAF library

– cd test
– make
– Applications using GSAF library must be started from X11 window

such as xterm, not from Terminal on macOS.
– ./bsctest
– 5 : Choose the size of window
– c : Continue the run
– m
– New graphic window opens and marks and lines are drawn.
– To go back to the original window, enter CR.
– If focus does not change, click the original window and check XQartz

preferences.
– e : Close the graphic window
– cd ../../..



Install TASK (5)

• Confirm the branch is develop and setup make.header

– cd task
– git branch (indicated branch should be develop)
– cp make.header.org make.header
– Edit make.header to remove comments for target OS and compiler

• Compile data exchange library BPSD

– cd ../bpsd
– make
– cd ../task



Install TASK (6)

• Choice of matrix solver configuration

– Single processing without MPI: make.mtxp.nompi
– Multi processing with single matrix solver:: make.mtxp.mpi
– Multi processing with parallel real matrix solver: make.mtxp.petsc
– Multi processing with parallel real and complex solver:

make.mtxp.petsc+mumps

• Modules using parallel matrix solver

– Real: fp, ti, pic, t2
– Complex: wmx, wf2d, wf2dt, wf2dx, wq

• Setup matrix solver library

– cd mtxp
– cp make.mtxp.XXX make.mtxp
– make
– cd ..



Install TASK (7)

• Compile modules:

– cd lib
– make
– cd ..

• Compile and run TASK module: eq for example

– cd eq
– make
– ./eq
– 5
– c
– r
– g
– s, CR, CR, · · ·
– x
– q



How to use GSAF

• At the beginning of the program

– Set graphic resolution (0: metafile output only, no graphics)
– commands
◦ c: continue
◦ f: set metafile name and start saving

• At the end of one page drawing

– commands
◦ c or CR: change focus to original window and continue
◦ f: set metafile name and start saving
◦ s: start saving and save this page
◦ y: save this page and continue
◦ n: continue without saving
◦ d: dump this page as a bitmap file “gsdumpn”
◦ b: switch on/off bell sound
◦ q: quit program after confirmation



Graphic Utilities

• Utility program

– gsview: View metafile
– gsprint: Print metafile on a postscript printer
– gstoeps: Convert metafile to eps files of each page
– gstops: Convert metafile to a postscript file of all pages
– gstotgif: Convert metafile to a tgif file for graphic editor tgif
– gstotsvg: Convert metafile to a svg file for web browser

• Options

– -a: output all pages, otherwise interactive mode
– -s ps: output from page ps
– -e pe: output until page pe
– -p np: output contiguous np pages on a sheet
– -b: output without title
– -r: rotate page
– -z: gray output



Typical File Name of TASK

• XXcomm.f90: Definition of global variables, allocation of arrays

• XXmain.f90: Main program for standalone use, read XXparm file

• XXmenu.f90: Command input

• XXinit.f90: Default values

• XXparm.f90: Read input parameters

• XXview.f90: Show input parameters

• XXprep.f90: Initialization of run, initial profile

• XXexec.f90: Execution of run

• XXgout.f90: Graphic output

• XXfout.f90: Text file output

• XXsave.f90: Binary file output

• XXload.f90: Binary file input



Typical input command

• When input line includes =, interpreted as a namelist input (e.g., rr=6.5)

• When the first character is not an alphabet, interpreted as line input

• r: Initialize profiles and execute

• c: Continue run

• p: Namelist input of input parameters

• v: Display of input parameters

• s: Save results into a file

• l: Load results from a file

• q: End of the program

• Order of input parameter setting

– Setting at the subroutine XX init in XXinit.f90
– Read a namelist file XXparm at the beginning of the program
– Setting by the input line



Install PETSc (1)

• PETSc: Parallel matrix solver library

– blas,lapack: matrix solver tolls
– scalapack, metis, parmetis, blacs, superlu: parallel solver tools
– MUMPS: Direct matrix solver for real and complex
– PETSc: Iterative matrix solver for real or complex

• Make PETSc directory and change its owner

– sudo mkdir /opt/PETSc
– sudo chown /opt/PETSc $USERNAME
– cd /opt/PETSc

• Download latest PETSc library package by git

– First download of PETSc source
◦ git clone -b release https://gitlab.com/petsc/petsc.git petsc

– In order to update PETSc source
◦ git pull



Install PETSc (2)

• Provide environment variables for PETSC in ∼/.profile or .zprofile

– export PETSC DIR=/opt/PETSc/petsc
– export PETSC ARCH=default

• Configure script in python

– Copy default.py to /opt/PETSc/petsc
– Provide exec attribute to default.py
◦ chmod 755 default.py

– Execute configuration script (It may take half an hour.)
◦ ./default.py

– Additional libraries are created in default/externalpackages

• Make and check PETSc library

– make (It may take half an hour.)
– make check


